...
首页> 外文期刊>Journal of Neurophysiology >Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor
【24h】

Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor

机译:遗传编码的混合电压传感器对脑切片中单个神经元的突触和突触电位进行单次试验成像

获取原文
获取原文并翻译 | 示例
           

摘要

Genetically encoded voltage sensors expand the optoeenetics toolkit into the important realm of electrical recording, enabling researchers to study the dynamic activity of complex neural circuits in real time. However, these probes have thus far performed poorly when tested in intact neural circuits. Hybrid voltage sensors (hVOS) enable the imaging of voltage by harnessing the resonant energy transfer that occurs between a genetically encoded component, a membrane-tethered fluorescent protein that serves as a donor, and a small charged molecule, dipicrylamine, which serves as an acceptor. hVOS generates optical signals as a result of voltage-induced changes in donor-acceptor distance. We expressed the hVOS probe in mouse brain by in utero electroporation and in transgenic mice with a neuronal promoter. Under conditions favoring sparse labeling we could visualize single-labeled neurons. hVOS imaging reported electrically evoked fluorescence changes from individual neurons in slices from entorhinal cortex, somatosensory cortex, and hippocampus. These fluorescence signals tracked action potentials in individual neurons in a single trial with excellent temporal fidelity, producing changes that exceeded background noise by as much as 16-fold. Subthreshold synaptic potentials were detected in single trials in multiple distinct cells simultaneously. We followed signal propagation between different cells within one field of view and between dendrites and somata of the same cell. hVOS imaging thus provides a tool for high-resolution recording of electrical activity from genetically targeted cells in intact neuronal circuits.
机译:基因编码的电压传感器将光电学工具包扩展到电记录的重要领域,使研究人员能够实时研究复杂神经电路的动态活动。但是,迄今为止,这些探针在完整的神经回路中进行测试时性能较差。混合电压传感器(hVOS)通过利用在遗传编码的成分,充当供体的膜拴荧光蛋白与作为接受体的小带电荷分子Dipicrylamine之间发生的共振能量转移来实现电压成像。由于供体-受体距离的电压诱导变化,hVOS产生光信号。我们通过子宫内电穿孔和具有神经元启动子的转基因小鼠在小鼠大脑中表达了hVOS探针。在有利于稀疏标记的条件下,我们可以可视化单个标记的神经元。 hVOS成像报告了内嗅皮层,体感皮层和海马切片中单个神经元的电诱发荧光变化。这些荧光信号在一次试验中以出色的时间保真度跟踪了单个神经元的动作电位,产生的变化超过背景噪声的16倍。在单个试验中同时在多个不同的细胞中检测到亚阈值的突触电位。我们跟踪一个视野内不同细胞之间以及同一细胞的树突和躯体之间的信号传播。因此,hVOS成像为高分辨率记录完整神经元回路中遗传靶向细胞的电活动提供了一种工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号