...
首页> 外文期刊>Journal of Molecular Biology >Mapping the Gating and Permeation Pathways in the Voltage-Gated Proton Channel Hv1
【24h】

Mapping the Gating and Permeation Pathways in the Voltage-Gated Proton Channel Hv1

机译:映射电压门控质子通道Hv1中的门控和渗透途径

获取原文
获取原文并翻译 | 示例
           

摘要

Voltage-gated proton channels (Hv1) are ubiquitous throughout nature and are implicated in numerous physiological processes. The gene encoding for Hv1, however, was only identified in 2006. The lack of sufficient structural information of this channel has hampered the understanding of the molecular mechanism of channel activation and proton permeation. This study uses both simulation and experimental approaches to further develop existing models of the Hv1 channel. Our study provides insights into features of channel gating and proton permeation pathway. We compare open- and closed-state structures developed previously with a recent crystal structure that traps the channel in a presumably closed state. Insights into gating pathways were provided using a combination of all-atom molecular dynamics simulations with a swarm of trajectories with the string method for extensive transition path sampling and evolution. A detailed residue residue interaction profile and a hydration profile were studied to map the gating pathway in this channel. In particular, it allows us to identify potential intermediate states and compare them to the experimentally observed crystal structure of Takeshita et al. (Takeshita K, Sakata S, Yamashita E, Fujiwara Y, Kawanabe A, Kurokawa T, et al. X-ray crystal structure of voltage-gated proton channel. Nature 2014). The mechanisms governing ion transport in the wild-type and mutant Hv1 channels were studied by a combination of electrophysiological recordings and free energy simulations. With these results, we were able to further refine ideas about the location and function of the selectivity filter. The refined structural models will be essential for future investigations of this channel and the development of new drugs targeting cellular proton transport. (C) 2014 Elsevier Ltd. All rights reserved.
机译:电压门控质子通道(Hv1)在大自然中无处不在,并涉及许多生理过程。然而,编码Hv1的基因直到2006年才被发现。该通道缺乏足够的结构信息,这妨碍了对通道激活和质子渗透的分子机制的理解。这项研究使用仿真和实验方法来进一步开发Hv1频道的现有模型。我们的研究提供了有关通道门控和质子渗透途径特征的见解。我们将先前开发的开态和闭态结构与最新的晶体结构进行了比较,该晶体结构将通道捕获为可能处于闭合状态。通过使用全原子分子动力学模拟与大量轨迹和弦方法相结合的方法,可以深入了解门控通道,以进行广泛的过渡路径采样和进化。研究了详细的残留物残留物相互作用曲线和水合曲线,以绘制该通道中的门控路径。特别是,它使我们能够识别潜在的中间状态,并将其与Takeshita等人的实验观察到的晶体结构进行比较。 (Takeshita K,Sakata S,Yamashita E,Fujiwara Y,Kawanabe A,Kurokawa T等人。电压门控质子通道的X射线晶体结构。自然,2014年)。通过结合电生理记录和自由能模拟研究了控制野生型和突变型Hv1通道中离子运输的机制。通过这些结果,我们能够进一步完善关于选择性过滤器的位置和功能的想法。完善的结构模型对于该通道的未来研究以及针对细胞质子转运的新药的开发至关重要。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号