...
首页> 外文期刊>Journal of Molecular Biology >Conformational dynamics and structural plasticity play critical roles in the ubiquitin recognition of a UIM domain.
【24h】

Conformational dynamics and structural plasticity play critical roles in the ubiquitin recognition of a UIM domain.

机译:构象动力学和结构可塑性在UIM域的泛素识别中起着关键作用。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ubiquitin-interacting motifs (UIMs) are an important class of protein domains that interact with ubiquitin or ubiquitin-like proteins. These approximately 20-residue-long domains are found in a variety of ubiquitin receptor proteins and serve as recognition modules towards intracellular targets, which may be individual ubiquitin subunits or polyubiquitin chains attached to a variety of proteins. Previous structural studies of interactions between UIMs and ubiquitin have shown that UIMs adopt an extended structure of a single alpha-helix, containing a hydrophobic surface with a conserved sequence pattern that interacts with key hydrophobic residues on ubiquitin. In light of this large body of structural studies, details regarding the presence and the roles of structural dynamics and plasticity are surprisingly lacking. In order to better understand the structural basis of ubiquitin-UIM recognition, we have characterized changes in the structure and dynamics of ubiquitin upon binding of a UIM domain from the yeast Vps27 protein. The solution structure of a ubiquitin-UIM fusion protein designed to study these interactions is reported here and found to consist of a well-defined ubiquitin core and a bipartite UIM helix. Moreover, we have studied the plasticity of the docking interface, as well as global changes in ubiquitin due to UIM binding at the picoseconds-to-nanoseconds and microseconds-to-milliseconds protein motions by nuclear magnetic resonance relaxation. Changes in generalized-order parameters of amide groups show a distinct trend towards increased structural rigidity at the UIM-ubiquitin interface relative to values determined in unbound ubiquitin. Analysis of (15)N Carr-Purcell-Meiboom-Gill relaxation dispersion measurements suggests the presence of two types of motions: one directly related to the UIM-binding interface and the other induced to distal parts of the protein. This study demonstrates a case where localized interactions among protein domains have global effects on protein motions at timescales ranging from picoseconds to milliseconds.
机译:泛素相互作用基序(UIM)是与泛素或类似泛素的蛋白质相互作用的重要一类蛋白质结构域。在各种泛素受体蛋白中发现了这些大约20个残基长的结构域,并充当针对细胞内靶标的识别模块,这些靶标可能是连接到多种蛋白的单个泛素亚基或聚泛素链。 UIM和泛素之间的相互作用的先前结构研究表明,UIM采用单个α-螺旋的扩展结构,该结构包含疏水表面,该表面具有与泛素上的关键疏水残基相互作用的保守序列模式。鉴于大量的结构研究,令人惊讶地缺乏有关结构动力学和可塑性的存在及其作用的细节。为了更好地理解泛素-UIM识别的结构基础,我们表征了结合酵母Vps27蛋白中的UIM域后,泛素的结构和动力学变化。本文报道了旨在研究这些相互作用的泛素-UIM融合蛋白的溶液结构,发现该结构由定义明确的泛素核心和二聚UIM螺旋组成。此外,我们已经研究了对接界面的可塑性,以及由于UIM在核磁共振弛豫过程中从皮秒到纳秒和微秒到毫秒的运动中结合UIM而导致的泛素的整体变化。酰胺基团的一般顺序参数的变化显示出相对于未结合的泛素确定的值,UIM-泛素界面处结构刚度增加的明显趋势。 (15)N Carr-Purcell-Meiboom-Gill弛豫分散测量的分析表明,存在两种类型的运动:一种与UIM结合界面直接相关,另一种与蛋白质的远端部分相关。这项研究表明了一种情况,其中蛋白质域之间的局部相互作用在皮秒到毫秒的时间范围内对蛋白质运动具有全局影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号