...
首页> 外文期刊>Journal of Molecular Biology >Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.
【24h】

Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.

机译:ASFV Pol X / DNA复合物的碱基对模拟不匹配有助于解释频繁的G * G掺入错误。

获取原文
获取原文并翻译 | 示例

摘要

DNA polymerase X (pol X) from the African swine fever virus is a 174-amino-acid repair polymerase that likely participates in a viral base excision repair mechanism, characterized by low fidelity. Surprisingly, pol X's insertion rate of the G*G mispair is comparable to that of the four Watson-Crick base pairs. This behavior is in contrast with another X-family polymerase, DNA polymerase beta (pol beta), which inserts G*G mismatches poorly, and has higher DNA repair fidelity. Using molecular dynamics simulations, we previously provided support for an induced-fit mechanism for pol X in the presence of the correct incoming nucleotide. Here, we perform molecular dynamics simulations of pol X/DNA complexes with different incoming incorrect nucleotides in various orientations [C*C, A*G, and G*G (anti) and A*G and G*G (syn)] and compare the results to available kinetic data and prior modeling. Intriguingly, the simulations reveal that the G*G mispair with the incoming nucleotide in the syn configuration undergoes large-scale conformational changes similar to that observed in the presence of correct base pair (G*C). The base pairing in the G*G mispair is achieved via Hoogsteen hydrogen bonding with an overall geometry that is well poised for catalysis. Simulations for other mismatched base pairs show that an intermediate closed state is achieved for the A*G and G*G mispair with the incoming dGTP in anti conformation, while the protein remains near the open conformation for the C*C and the A*G syn mismatches. In addition, catalytic site geometry and base pairing at the nascent template-incoming nucleotide interaction reveal distortions and misalignments that range from moderate for A*G anti to worst for the C*C complex. These results agree well with kinetic data for pol X and provide a structural/dynamic basis to explain, at atomic level, the fidelity of this polymerase compared with other members of the X family. In particular, the more open and pliant active site of pol X, compared to pol beta, allows pol X to accommodate bulkier mismatches such as guanine opposite guanine, while the more structured and organized pol beta active site imposes higher discrimination, which results in higher fidelity. The possibility of syn conformers resonates with other low-fidelity enzymes such as Dpo4 (from the Y family), which readily accommodate oxidative lesions.
机译:来自非洲猪瘟病毒的DNA聚合酶X(pol X)是一种174个氨基酸的修复聚合酶,它可能参与以保真度低为特征的病毒碱基切除修复机制。出乎意料的是,pol X的G * G错配插入率与四个Watson-Crick碱基对相当。这种行为与另一种X族聚合酶DNA聚合酶beta(pol beta)相反,后者插入的G * G错配不佳,并且具有较高的DNA修复保真度。使用分子动力学模拟,我们先前为在存在正确的传入核苷酸的情况下pol X的诱导拟合机制提供了支持。在这里,我们对具有不同方向[C * C,A * G和G * G(反),A * G和G * G(同))的不同核苷酸输入的pol X / DNA复合物进行分子动力学模拟,并且将结果与可用的动力学数据和先前的建模进行比较。有趣的是,模拟结果显示,与在syn构型中进入核苷酸的G * G错配经历了大规模构象变化,类似于在存在正确碱基对(G * C)的情况下观察到的构象变化。 G * G错配中的碱基配对是通过Hoogsteen氢键实现的,其整体几何结构很容易催化。对其他错配碱基对的模拟表明,A * G和G * G错配与进入的dGTP处于反构象时达到中间闭合状态,而蛋白质对于C * C和A * G则保持在开放构象附近syn不匹配。此外,新生模板传入核苷酸相互作用处的催化位点几何形状和碱基配对显示出畸变和错位,范围从A * G中等到C * C复杂。这些结果与pol X的动力学数据非常吻合,并提供了结构/动力学基础,可以在原子水平上解释该聚合酶与X家族其他成员相比的保真度。尤其是,与polβ相比,pol X更加开放和灵活的活性位点使pol X可以容纳更大的错配,例如鸟嘌呤与鸟嘌呤相对,而结构化和组织化的polβ活性位点具有更高的歧视性,从而导致保真。顺式构象异构体的可能性与其他低保真酶(如Dpo4(来自Y家族))共鸣,这些酶容易适应氧化损伤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号