...
首页> 外文期刊>Journal of Materials Science >Tunable morphology from 2D to 3D in the formation of hierarchical architectures from a self-assembling dipeptide: thermal-induced morphological transition to 1D nanostructures
【24h】

Tunable morphology from 2D to 3D in the formation of hierarchical architectures from a self-assembling dipeptide: thermal-induced morphological transition to 1D nanostructures

机译:从2D到3D的可调谐形态学,形成自组装二肽的层次结构:热诱导的形态学转变为1D纳米结构

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Construction of complex three-dimensional (3D) architectures through hierarchical self-assembly of peptide molecules has become an attractive approach of fabricating multifunctional advanced materials due to their various potential applications in bionanotechnology. This paper describes the tunable formation of flower-like 3D hierarchical architectures of intricate morphology from a simple self-assembling dipeptide phenylalanine-tyrosine with a facile preparative method by applying a range of voltages through a drop of peptide solution. The fine-tuning of voltages and their application time enable to produce morphological changes of the microstructures from 2D to 3D and also control their formation. The morphology has been characterized by the gradual change in the height-to-diameter ratio of the microstructures with change in the applied voltages. Moreover, these microstructures show significant thermal stability over a wide range of temperatures, whereas adequately high temperature promotes the morphological transformation of the microstructures into different types of ultrathin 1D nanostructures such as nanowires, nanofibrils, etc. Furthermore, we have suggested a possible growth model for the fabrication of unique hierarchical architectures through diffusion-limited aggregation mechanism.
机译:由于肽分子在生化技术中的各种潜在应用,通过肽分子的分层自组装构建复杂的三维(3D)结构已成为制造多功能高级材料的一种有吸引力的方法。本文描述了一种简单的自组装二肽苯丙氨酸-酪氨酸,通过简便的制备方法,通过一滴肽溶液施加一定范围的电压,从而形成复杂形态的花状3D层次结构的可调形式。电压的微调及其施加时间使得能够产生从2D到3D的微观结构的形态变化,并控制它们的形成。形态的特征是随着施加电压的变化,微结构的高度与直径之比逐渐变化。此外,这些微结构在很宽的温度范围内均显示出显着的热稳定性,而足够高的温度则促进了微结构向不同类型的超薄一维纳米结构(如纳米线,纳米原纤维等)的形态转化。此外,我们提出了可能的生长模型通过扩散限制聚合机制来制造唯一的分层体系结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号