...
首页> 外文期刊>Journal of Materials Science >Atomic scale modeling of shock response of fused silica and alpha-quartz
【24h】

Atomic scale modeling of shock response of fused silica and alpha-quartz

机译:熔融石英和α-石英冲击响应的原子尺度建模

获取原文
获取原文并翻译 | 示例

摘要

Large-scale molecular dynamics (MD) simulations are carried out using the Tersoff potential to understand the shock wave propagation behavior and the microstructural response of amorphous silica (a-SiO2) and alpha-quartz. The effect of shock pressure on the densification and phase transformation behavior is investigated using impact velocities of 0.5, 1.0, 1.5, and 2.0 km/s for a-SiO2 and using impact velocities of 2.0 and 3.0 km/s for alpha-quartz. MD simulations for a-SiO2 suggest that impact velocities of 1.5 km/s and higher result in average pressures that are greater than 9 GPa for the compressed material leading to permanent densification of the material behind the shock front. In addition, the high peak pressures render a phase transformation of the amorphous phase to the high-pressure stishovite phase, and the microstructure corresponds to a heterogeneous mixture of stishovite and liquid SiO2. Spall failure due to the interaction of the reflected tensile waves, however, is not observed for any of the velocities considered for amorphous silica as the peak tensile pressure generated is insufficient to nucleate cracks. This is verified through MD simulations of uniaxial expansion of fused silica to compute the spall strength at the strain rates generated during shock simulations (10(9 to) 10(10) s(-1)). The uniaxial expansion simulations suggest a brittle mode of failure for a-SiO2, as observed experimentally. In comparison, shock-induced densification and phase transformation behavior to the high-pressure stishovite phase are also observed for alpha-quartz for an impact velocity of 3.0 km/s. The threshold pressures for the densification and phase transformation behavior for amorphous silica and alpha-quartz compare very well with those observed experimentally.
机译:使用Tersoff电势进行大规模分子动力学(MD)模拟,以了解冲击波的传播行为以及非晶硅(a-SiO2)和α-石英的微观结构响应。使用a-SiO2的冲击速度为0.5、1.0、1.5和2.0 km / s,使用α-石英的冲击速度为2.0和3.0 km / s,研究了冲击压力对致密化和相变行为的影响。 MD对a-SiO2的模拟表明,1.5 km / s和更高的冲击速度会导致压缩材料的平均压力大于9 GPa,从而使材料在冲击波前部永久地致密化。另外,高的峰值压力使非晶态相转变成高压水辉石相,并且微观结构对应于水辉石和液态SiO 2的不均匀混合物。然而,对于所考虑的无定形二氧化硅的任何速度,都没有观察到由于反射的拉伸波的相互作用引起的剥落破坏,因为所产生的峰值拉伸压力不足以使裂纹成核。这可以通过对熔融石英单轴膨胀的MD模拟来计算,以计算在冲击模拟过程中产生的应变率下的剥落强度(10(9至)10(10)s(-1))。如实验观察到的,单轴膨胀模拟表明a-SiO2的脆性破坏模式。相比之下,在撞击速度为3.0 km / s的情况下,对于α-石英,还观察到了冲击诱导的致密化和向高压菱沸石相的相变行为。无定形二氧化硅和α-石英的致密化和相变行为的阈值压力与实验观察到的很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号