首页> 外文期刊>Journal of Materials Processing Technology >A rapid GPU-based heat transfer and solidification model for dynamic computer simulations of continuous steel casting
【24h】

A rapid GPU-based heat transfer and solidification model for dynamic computer simulations of continuous steel casting

机译:基于GPU的快速传热和凝固模型,用于连续钢铸件的动态计算机仿真

获取原文
获取原文并翻译 | 示例
       

摘要

The paper presents a GPU-based model for continuous casting of steel. The model provides rapid computation capabilities required for real-time use in the casting control and optimization. The fully three-dimensional formulation of the heat transfer and solidification model is based on the control volume method and it allows for very fast transient simulations of the thermal behaviour of cast strands. The developed model has been verified on Stefan problem and validated with industry measurements. Heat transfer conditions in the mould and secondary cooling were determined experimentally in lab-scale experiments. The computational model is implemented as highly-parallel with the use of the NVIDIA CUDA architecture, which enables to launch the model on graphics processing units (GPUs) allowing for its great acceleration. The acceleration can be evaluated with the use of the relative computational time, which is the dimensionless ratio between the computational time that the model needs to compute the simulation and the wall-clock time of the real casting process being simulated. The relative computational time of the presented GPU-based computational model is between 0.0016 for a coarse mesh and 0.27 for a very fine mesh. The corresponding multiple of the GPU-acceleration, which is the ratio between the computational time of the GPU-based model and of the CPU-based model for the identical simulation, is between 33 and 68. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了一种基于GPU的钢连续铸造模型。该模型提供了在铸造控制和优化中实时使用所需的快速计算功能。传热和凝固模型的全三维公式是基于控制体积法的,它可以非常快速地对铸坯的热行为进行瞬态模拟。所开发的模型已针对Stefan问题进行了验证,并已通过行业度量进行了验证。在实验室规模的实验中,实验确定了模具中的传热条件和二次冷却。该计算模型的实现与NVIDIA CUDA架构的使用高度并行,该架构可在图形处理单元(GPU)上启动该模型,从而大大加快了运算速度。可以使用相对计算时间来评估加速度,该相对计算时间是模型计算模拟所需的计算时间与模拟的实际铸造过程的挂钟时间之间的无量纲比率。提出的基于GPU的计算模型的相对计算时间在粗网格的0.0016和非常精细的网格的0.27之间。 GPU加速度的相应倍数(介于相同仿真的基于GPU的模型和基于CPU的模型的计算时间之间的比率)在33到68之间。(C)2015 Elsevier BV版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号