...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >A practical approach for uncertainty quantification of high-frequency soil respiration using Forced Diffusion chambers
【24h】

A practical approach for uncertainty quantification of high-frequency soil respiration using Forced Diffusion chambers

机译:一种使用强迫扩散室进行高频土壤呼吸不确定性定量的实用方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper examines the sources of uncertainty for the Forced Diffusion (FD) chamber soil respiration (R_s) measurement technique and demonstrates a protocol for uncertainty quantification that could be appropriate with any soil flux technique. Here we sought to quantify and compare the three primary sources of uncertainty in R_s: (1) instrumentation error; (2) scaling error, which stems fromthe spatial variability of R_s; and (3) random error, which arises from stochastic or unpredictable variation in environmental drivers and was quantified from repeated observations under a narrow temperature, moisture, and time range. In laboratory studies, we found that FD instrumentation error remained constant as R_s increased. In field studies from five North American ecosystems, we found that as Rs increased from winter to peak growing season, random error increased linearly with average flux by about 40% of average R_s. Random error not only scales with soil flux but scales in a consistent way (same slope) across ecosystems. Scaling error, measured at one site, similarly increased linearly with average R_s, by about 50% of average R_s. Our findings are consistent with previous findings for both soil fluxes and eddy covariance fluxes across other northern temperate ecosystems that showed random error scales linearly with flux magnitude with a slope of ~0.2. Although the mechanistic basis for this scaling of random error is unknown, it is suggestive of a broadly applicable rule for predicting flux random error. Also consistent with previous studies, we found the random error of FD follows a Laplace (double-exponential) rather than a normal (Gaussian) distribution.
机译:本文研究了强制扩散(FD)室内土壤呼吸(R_s)测量技术的不确定性来源,并演示了适用于任何土壤通量技术的不确定性量化协议。在这里,我们试图量化和比较R_s不确定性的三个主要来源:(1)仪器误差; (2)缩放误差,其源于R_s的空间变异性; (3)随机误差,它是由环境驱动因素中的随机变化或不可预测的变化引起的,并根据在狭窄的温度,湿度和时间范围内的重复观测进行量化。在实验室研究中,我们发现FD仪器误差随着R_s的增加而保持恒定。在来自五个北美生态系统的野外研究中,我们发现,随着Rs从冬季到生长期的峰值增长,随机误差随平均通量线性增加,约为平均R_s的40%。随机误差不仅随土壤流量变化,而且在整个生态系统中以一致的方式(相同的斜率)变化。在一个站点上测量的定标误差与平均R_s类似地线性增加,约为平均R_s的50%。我们的发现与先前在其他北部温带生态系统中土壤通量和涡度协方差通量的发现一致,该随机通量线性变化的随机误差尺度与通量大小呈线性关系,斜率为〜0.2。尽管这种随机误差定标的机理基础是未知的,但它暗示了用于预测通量随机误差的广泛适用的规则。同样与先前的研究一致,我们发现FD的随机误差遵循拉普拉斯(双指数)分布,而不是正态(高斯)分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号