首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration
【24h】

Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration

机译:土壤微生物群落对温度的敏感性:大分子速率理论在微生物呼吸中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

There is compelling evidence that microbial communities vary widely in their temperature sensitivity and may adapt to warming through time. To date, this sensitivity has been largely characterized using a range of models relying on versions of the Arrhenius equation, which predicts an exponential increase in reaction rate with temperature. However, there is growing evidence from laboratory and field studies that observe nonmonotonic responses of reaction rates to variation in temperature, indicating that Arrhenius is not an appropriate model for quantitatively characterizing temperature sensitivity. Recently, Hobbs et al. (2013) developed macromolecular rate theory (MMRT), which incorporates thermodynamic temperature optima as arising from heat capacity differences between isoenzymes. We applied MMRT to measurements of respiration from soils incubated at different temperatures. These soils were collected from three grassland sites across the U.S. Great Plains and reciprocally transplanted, allowing us to isolate the effects of microbial community type from edaphic factors. We found that microbial community type explained roughly 30% of the variation in the CO_2 production rate from the labile C pool but that temperature and soil type were most important in explaining variation in labile and recalcitrant C pool size. For six out of the nine soil × inoculum combinations, MMRT was superior to Arrhenius. The MMRT analysis revealed that microbial communities have distinct heat capacity values and temperature sensitivities sometimes independent of soil type. These results challenge the current paradigm for modeling temperature sensitivity of soil C pools and understanding of microbial enzyme dynamics.
机译:有令人信服的证据表明,微生物群落的温度敏感性差异很大,并且可能随着时间的推移而适应变暖。迄今为止,已使用一系列依赖于Arrhenius方程的模型对这种敏感性进行了很大的描述,该模型预测了反应速率随温度呈指数增长。但是,越来越多的实验室和现场研究证据表明,观察到反应速率对温度变化的非单调响应,表明Arrhenius不是用于定量表征温度敏感性的合适模型。最近,霍布斯等。 (2013年)开发了大分子速率理论(MMRT),该理论结合了热力学最佳温度,这是由于同工酶之间的热容量差异引起的。我们将MMRT应用于测量在不同温度下培养的土壤的呼吸作用。这些土壤是从美国大平原的三个草地采集的,并相互移植,使我们能够从微生物因素中分离出微生物群落类型的影响。我们发现,微生物群落类型解释了不稳定C池中CO_2产生率变化的大约30%,但温度和土壤类型对于解释不稳定C和顽re C池大小的变化最为重要。在九种土壤×接种物组合中,有六种中,MMRT优于Arrhenius。 MMRT分析表明,微生物群落具有不同的热容值和温度敏感性,有时与土壤类型无关。这些结果挑战了目前对土壤碳库的温度敏感性建模和对微生物酶动力学的理解的范例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号