首页> 外文期刊>Journal of chromatography, A: Including electrophoresis and other separation methods >Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography
【24h】

Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography

机译:制备用于离子交换色谱的静电纺丝纤维素纳米纤维吸附剂

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10 MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000 CV/h (2s and 0.3 s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12 mg BSA/mL for DEAE and from 10 to 21 mg lysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1 MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20 mg BSA/mL and 27 mg lysozyme/mL, respectively. At 1 MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000 CV/h. For compression loads of 5 MPa and 10 MPa, adsorbents recorded lower DBCs than I MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an uncompressed adsorbent, compressions of 1, 5 and 10 MPa showed increases of 30%, 110% and 110%, respectively, for both functionalisations. The data presented show that capacity and mechanical strength can be balanced through compression after electrospinning and is particular to different functionalisations. This trade-off is critical to the development of nanofibre adsorbents into different packing configurations for application and scale up in bioseparation. (C) 2014 The Authors. Published by Elsevier B.V.
机译:蛋白质分离是生物制药生产中不可或缺的一步,扩散受限的填充床色谱法仍然是工业上的默认选择。使用对流传质介质的快速结合物-洗脱分离通过高流速运行在生产率方面具有优势。电纺纳米纤维吸附剂是一种高表面积和高孔隙率的非织造纤维基质,以前已作为生物分离介质进行了研究。使用二乙基氨基乙基(DEAE)或羧酸盐(COO)官能化技术研究了醋酸纤维素纳米纤维静电纺丝后压缩层和床层以及后续热处理的影响。测量了压力,并通过压缩载荷进行比较,压缩1、5和10 MPa时,COO吸附剂分别比DEAE高30%,70%和90%,这归因于亲水性COO基团的溶胀作用。在正常结合条件下,在2000至12,000 CV / h(停留时间2s和0.3s)之间测量了突破10%时的动态结合能力(DBC),并且随着反应物浓度的增加,DEAE的动态结合能力从4升高至12 mg BSA / mL。对于COO吸附剂为10至21 mg溶菌酶/ mL。比较电纺丝后施加的压缩负荷能力,结果表明,测试的最低负荷为1 MPa,分别以20 mg BSA / mL和27 mg溶菌酶/ mL产生了DEAE和COO吸附剂的最高DBC。在1 MPa时,DBC在测试的最低流速下最高,但在2000 CV / h以上的流速下稳定。对于5 MPa和10 MPa的压缩负载,由于纳米纤维的堆积和表面积的减小,吸附剂的DBC值低于1 MPa。床层数从4增加到12表示两种吸附剂的DBC减少。记录拉伸强度以表明吸附剂的机械强度,并且与将纳米纤维吸附剂以大规模构造例如打褶的滤筒包装有关。与未压缩的吸附剂相比,两种功能化的压缩压力分别为1、5和10 MPa,分别增加了30%,110%和110%。所提供的数据表明,静电纺丝后的压缩可以平衡容量和机械强度,并且对不同的功能性尤为重要。这种折衷对于将纳米纤维吸附剂开发成不同的填充结构以在生物分离中应用和扩大规模至关重要。 (C)2014作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号