...
首页> 外文期刊>Current drug metabolism >Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the 'advanced dissolution, absorption, metabolism (ADAM)' model.
【24h】

Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the 'advanced dissolution, absorption, metabolism (ADAM)' model.

机译:代谢和运输在确定口服药物吸收和肠壁代谢中的相互作用:使用“高级溶出,吸收,代谢(ADAM)”模型的模拟评估。

获取原文
获取原文并翻译 | 示例
           

摘要

Bioavailability of orally administered drugs can be influenced by a number of factors including release from the formulation, dissolution, stability in the gastrointestinal (GI) environment, permeability through the gut wall and first-pass gut wall and hepatic metabolism. Although there are various enzymes in the gut wall which may contribute to gut first pass metabolism, Cytochrome P450 (CYP) 3A has been shown to play a major role. The efflux transporter P-glycoprotein (P-gp; MDR1/ABCB1) is the most extensively studied drug efflux transporter in the gut and might have a significant role in the regulation of GI absorption. Although not every CYP3A substrate will have a high extent of gut wall first-pass extraction, being a substrate for the enzyme increases the likelihood of a higher first-pass extraction. Similarly, being a P-gp substrate does not necessarily pose a problem with the gut wall absorption however it may reduce bioavailability in some cases (e.g. when drug has low passive permeability). An on-going debate has focused on the issue of the interplay between CYP3A and P-gp such that high affinity to P-gp increases the exposure of drug to CYP3A through repeated cycling via passive diffusion and active efflux, decreasing the fraction of drug that escapes first pass gut metabolism (F(G)). The presence of P-gp in the gut wall and the high affinity of some CYP3A substrates to this transporter are postulated to reduce the potential for saturating the enzymes, thus increasing gut wall first-pass metabolism for compounds which otherwise would have saturated CYP3A. Such inferences are based on assumptions in the modelling of oral drug absorption. These models should be as mechanistic as possible and tractable using available in vitro and in vivo information. We review, through simulation, this subject and examine the interplay between gut wall metabolism and efflux transporters by studying the fraction of dose absorbed into enterocytes (F(a)) and F(G) via systematic variation of drug characteristics, in accordance with the Biopharmaceutics Classification System (BCS) within one of the most physiological models of oral drug absorption currently available, respectively ADAM. Variables studied included the intrinsic clearance (CLint) and the Michaelis-Menten Constant (Km) for CYP3A4 and P-gp (C(Lint-CYP3A4) and K(m-CYP3A4), CL(int-P-gp) and K(m-P-gp)). The impact of CYP3A4 and P-gp intracellular topography were not investigated since a well-stirred enterocyte is assumed within ADAM. An increased CLint-CYP3A4 resulted in a reduced F(G) whereas an increase in C(Lint-P-gp) resulted in a reduced F(a), but interestingly decreased F(G) too. The reduction in FG was limited to certain conditions and was modest. Non-linear relationships between various parameters determining the permeability (e.g. P(app), C(Lint-P-gp,) and K(m-P-gp)) and gut wall metabolism (e.g. C(Lint-CYP3A4,) K(m-CYP3A4)) resulted in disproportionate changes in F(G) compared to the magnitude of singular effects. The results suggest that P-gp efflux decreases enterocytic drug concentration for drugs given at reasonably high dose which possess adequate passive permeability (high P(app)), by de-saturating CYP3A4 in the gut resulting in a lower F(G). However, these findings were observed only in a very limited area of the parameters space matching very few therapeutic drugs (a group with very high metabolism, high turn-over by efflux transporters and low F(a)). The systematic approach in this study enabled us to recognise the combination of parameters values where the potential interplay between metabolising enzymes and efflux transporters is expected to be highest, using a realistic range of parameter values taken from an intensive literature search.
机译:口服药物的生物利用度可能受许多因素影响,这些因素包括从制剂中释放,溶解,在胃肠道(GI)环境中的稳定性,通过肠壁和首过肠壁的通透性以及肝代谢。尽管在肠壁中有多种酶可能有助于肠首过代谢,但已证明细胞色素P450(CYP)3A起着重要作用。外排转运蛋白P-糖蛋白(P-gp; MDR1 / ABCB1)是肠道中研究最广泛的药物外排转运蛋白,可能在胃肠道吸收的调节中起重要作用。尽管不是每个CYP3A底物都具有很高的肠壁首过提取率,但作为酶的底物会增加更高的首过提取率。类似地,作为P-gp底物不一定会引起肠壁吸收问题,但是在某些情况下(例如,药物的被动渗透率较低),它可能会降低生物利用度。正在进行的辩论集中在CYP3A和P-gp之间的相互作用问题上,以至于对P-gp的高亲和力通过被动扩散和主动外排的反复循环增加了药物对CYP3A的暴露,从而降低了逃脱首过肠道的新陈代谢(F(G))。推测肠壁中P-gp的存在和某些CYP3A底物对该转运蛋白的高亲和力可降低使酶饱和的可能性,从而增加了肠壁的首过代谢,否则化合物会具有饱和的CYP3A。此类推论基于口服药物吸收模型中的假设。使用可用的体外和体内信息,这些模型应尽可能机械化且易于处理。我们通过模拟来复习本主题,并通过系统性地改变药物特性来研究吸收进入肠细胞(F(a))和F(G)的剂量比例,从而研究肠道壁代谢与外排转运蛋白之间的相互作用。生物药物分类系统(BCS)是目前可用的口服药物吸收的最生理模型之一,分别是ADAM。研究的变量包括CYP3A4和P-gp(C(Lint-CYP3A4)和K(m-CYP3A4),CL(int-P-gp)和K(K)的固有清除率(CLint)和米氏常数(Km) mP-gp))。 CYP3A4和P-gp细胞内形貌的影响未进行研究,因为在ADAM中假定肠细胞充分搅拌。 CLint-CYP3A4的增加导致F(G)减少,而C(Lint-P-gp)的增加导致F(a)减少,但有趣的是F(G)也减少。 FG的减少仅限于某些条件,且适度。决定渗透率的各种参数(例如P(app),C(Lint-P-gp,)和K(mP-gp))与肠壁代谢(例如C(Lint-CYP3A4,)K(m -CYP3A4))与奇异效应的大小相比,导致F(G)的变化不成比例。结果表明,通过使肠道中的CYP3A4饱和,导致F(G)降低,P-gp外排降低了合理剂量的高剂量药物的肠溶药物浓度,这些药物具有足够的被动渗透性(高P(app))。但是,这些发现仅在与极少数治疗药物相匹配的参数空间的非常有限的区域中观察到(新陈代谢很高,外排转运蛋白的高周转率和低F(a)的组)。在这项研究中,系统的方法使我们能够使用大量文献检索中的实际参数范围,来识别参数值的组合,其中代谢酶和外排转运蛋白之间的潜在相互作用预计最高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号