首页> 外文期刊>Journal of Cell Science >A design principle underlying the synchronization of oscillations in cellular systems.
【24h】

A design principle underlying the synchronization of oscillations in cellular systems.

机译:蜂窝系统中振荡同步基础的设计原理。

获取原文
获取原文并翻译 | 示例
           

摘要

Biological oscillations are found ubiquitously in cells and are widely variable, with periods varying from milliseconds to months, and scales involving subcellular components to large groups of organisms. Interestingly, independent oscillators from different cells often show synchronization that is not the consequence of an external regulator. What is the underlying design principle of such synchronized oscillations, and can modeling show that the complex consequences arise from simple molecular or other interactions between oscillators? When biological oscillators are coupled with each other, we found that synchronization is induced when they are connected together through a positive feedback loop. Increasing the coupling strength of two independent oscillators shows a threshold beyond which synchronization occurs within a few cycles, and a second threshold where oscillation stops. The positive feedback loop can be composed of either double-positive (PP) or double-negative (NN) interactions between a node of each of the two oscillating networks. The different coupling structures have contrasting characteristics. In particular, PP coupling is advantageous with respect to stability of period and amplitude, when local oscillators are coupled with a short time delay, whereas NN coupling is advantageous for a long time delay. In addition, PP coupling results in more robust synchronized oscillations with respect to amplitude excursions but not period, with applied noise disturbances compared to NN coupling. However, PP coupling can induce a large fluctuation in the amplitude and period of the resulting synchronized oscillation depending on the coupling strength, whereas NN coupling ensures almost constant amplitude and period irrespective of the coupling strength. Intriguingly, we have also observed that artificial evolution of random digital oscillator circuits also follows this design principle. We conclude that a different coupling strategy might have been selected according to different evolutionary requirements.
机译:生物振荡普遍存在于细胞中,并且变化很大,周期从毫秒到数月不等,其规模涉及亚细胞成分到大量生物体。有趣的是,来自不同单元的独立振荡器通常显示出同步,这不是外部稳压器的结果。这种同步振荡的基本设计原理是什么,建模可以表明复杂的结果是由于振荡器之间的简单分子相互作用或其他相互作用引起的吗?当生物振荡器相互耦合时,我们发现当它们通过正反馈回路连接在一起时,就会引起同步。增加两个独立振荡器的耦合强度会显示一个阈值,超过该阈值将在几个周期内发生同步;如果出现第二个阈值,则会停止振荡。正反馈回路可以由两个振荡网络的每个节点之间的双正(PP)或双负(NN)相互作用组成。不同的耦合结构具有对比特征。特别地,当本地振荡器以短时间延迟耦合时,PP耦合在周期和幅度的稳定性方面是有利的,而NN耦合在长时间延迟方面是有利的。此外,与NN耦合相比,PP耦合相对于振幅偏移(而非周期)会产生更鲁棒的同步振荡,并施加了噪声干扰。但是,PP耦合会根据耦合强度而导致所产生的同步振荡的幅度和周期发生较大波动,而NN耦合则不管耦合强度如何,都能确保几乎恒定的幅度和周期。有趣的是,我们还观察到随机数字振荡器电路的人工进化也遵循这种设计原理。我们得出结论,可能已根据不同的进化要求选择了不同的耦合策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号