...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Microstructure, basic thermal-mechanical and Charpy impact properties of W-0.1 wt.% TiC alloy via chemical method
【24h】

Microstructure, basic thermal-mechanical and Charpy impact properties of W-0.1 wt.% TiC alloy via chemical method

机译:W-0.1 wt。%TiC合金的化学结构,基本热力学和夏比冲击性能

获取原文
获取原文并翻译 | 示例
           

摘要

W-0.1 wt.% TiC materials with different rolling reduction (65% and 83%) were fabricated by wet chemical method, medium-frequency induction sintering and hot rolling and their microstructures, chemical composition, basic mechanical properties, high temperature tensile properties and Charpy impact properties were characterized. For comparing, commercial pure tungsten powders were sintered and hot rolled with the same procedure. The results revealed that the heavily elongated TiC particles were uniformly distributed in the grain interiors. In addition, the intragranular TiC particles combining with severe plastic deformation could refine the grain size and increase both the strength and toughness of tungsten materials remarkably. The W-TiC alloy with rolling reduction of 83% exhibited the highest bending strength of 1260 MPa, the highest tensile elongation of 19.3% and 13.6% at 300 and 600 degrees C respectively, the highest Charpy absorbed energies at 400-900 degrees C and the lowest DBTT of about 450 degrees C. In contrast, the pure tungsten with the same rolling reduction displayed the lowest bending strength of 1035.4 MPa, the lowest tensile elongation of 12.1% and 9.3% at 300 and 600 degrees C respectively, the much lower Charpy absorbed energies at 400-900 degrees C and the higher DBTT of 650 degrees C. Interestingly, pure tungsten with more rolling reduction resulted in larger grain size due to their low recrystallization temperature. Conversely, the W-TiC alloys achieved smaller grain size with more rolling reduction due to the elevated recrystallization temperature by the addition of TiC particles. Another interesting phenomenon is that the total tensile elongations of the samples tested at 600 degrees C were all lower than the samples tested at 300 degrees C. The reason was attributed to the different moving behavior of the dislocations at different tensile test temperatures. (C) 2015 Elsevier B.V. All rights reserved.
机译:采用湿化学法,中频感应烧结和热轧工艺制备了压下率分别为65%和83%的W-0.1 wt。%TiC材料及其组织,化学成分,基本力学性能,高温拉伸性能和表征了夏比冲击性能。为了进行比较,以相同的程序烧结并热轧商品钨粉。结果表明,重度伸长的TiC颗粒均匀地分布在晶粒内部。此外,晶内TiC颗粒与严重的塑性变形相结合可以细化晶粒尺寸,并显着提高钨材料的强度和韧性。压下率达83%的W-TiC合金在300和600摄氏度时分别表现出最高的抗弯强度1260 MPa,最大拉伸伸长率19.3%和13.6%,在400-900摄氏度下的最高夏比吸收能最低的DBTT约为450摄氏度。相反,具有相同轧制压下率的纯钨在300和600摄氏度下分别显示出最低的弯曲强度1035.4 MPa,最低的拉伸伸长率12.1%和9.3%,低得多。夏比在400-900摄氏度和650摄氏度的较高DBTT下吸收能量。有趣的是,具有更大轧制压下率的纯钨由于其低的再结晶温度而导致较大的晶粒尺寸。相反,由于加入TiC颗粒提高了再结晶温度,W-TiC合金获得了较小的晶粒尺寸,并且具有更大的压下率。另一个有趣的现象是,在600摄氏度下测试的样品的总拉伸伸长率均低于在300摄氏度下测试的样品。其原因归因于在不同的拉伸测试温度下位错的不同移动行为。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号