...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Microstructural and chemical changes after high temperature electrolysis in solid oxide electrolysis cell
【24h】

Microstructural and chemical changes after high temperature electrolysis in solid oxide electrolysis cell

机译:固体氧化物电解槽高温电解后的组织和化学变化

获取原文
获取原文并翻译 | 示例
           

摘要

Degradation of solid oxide electrolysis cell is probably the main problem in the field of high temperature steam electrolysis. In this study two anode-supported solid oxide fuel cells were tested as a solid oxide electrolysis cell operating from 875 degrees C to 950 degrees C at the applied voltage of 1.5 V and 1.7 V respectively. Microstructural and chemical changes of the cell components were studied by field emission scanning electron microscope (FESEM), and X-ray diffraction (XRD) analysis before and after the electrolysis. FESEM analysis shows a delamination of anode layer from the electrolyte. Furthermore, formation of impurities like yttrium silicate at the cathode-electrolyte interface and lanthanum zirconate (LZ) at the anode-electrolyte interface were observed after electrolysis. It also reveals that lanthanum zicronate is formed only at the interfaces between anode functional layer La0.65Sr0.3MnO3-delta (LSM)/8 mol% yttria stabilized zirconia (YSZ) and electrolyte layer (YSZ) but not at the whole anode layer. Formation of LZ is attributed to the high partial pressure of oxygen at the anode-electrolyte interface while yttrium silicate is formed due to the diffusion of silica from glass sealant into the cathode layer. (C) 2014 Elsevier B.V. All rights reserved.
机译:固体氧化物电解槽的降解可能是高温蒸汽电解领域中的主要问题。在这项研究中,对两个阳极支撑的固体氧化物燃料电池进行了测试,作为固体氧化物电解电池,分别在施加电压1.5 V和1.7 V的情况下,在875摄氏度至950摄氏度下运行。通过场发射扫描电子显微镜(FESEM)和电解前后的X射线衍射(XRD)分析研究了电池组件的微观结构和化学变化。 FESEM分析显示阳极层与电解质分层。此外,电解后观察到在阴极-电解质界面处形成诸如硅酸钇的杂质以及在阳极-电解质界面处形成锆酸镧(LZ)的杂质。还揭示了仅在阳极功能层La0.65Sr0.3MnO3-δ(LSM)/ 8mol%氧化钇稳定的氧化锆(YSZ)和电解质层(YSZ)之间的界面上形成了锆钛酸镧,而不在整个阳极层上形成。 LZ的形成归因于阳极-电解质界面处的高氧分压,而硅酸钇则由于二氧化硅从玻璃密封剂扩散到阴极层而形成。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号