...
首页> 外文期刊>Journal of Agricultural and Food Chemistry >Profiling the Monascus pilosus Proteome during Nitrogen Limitation
【24h】

Profiling the Monascus pilosus Proteome during Nitrogen Limitation

机译:氮限制条件下分析红曲菌蛋白质组学

获取原文
获取原文并翻译 | 示例
           

摘要

Monascus species have the unique ability to economically produce many secondary metabolites.However,the influence of nitrogen limitation on Monascus secondary metabolite production and metabolic performance remains unclear.Varying the carbonitrogen (C/N) ratios in the range from 20 to 60 in cultivation of Monascus pilosus by glucose nitrate medium,our resulting data showed that red pigment production was significantly suppressed and more sensitive to nitrogen limitation than cellular biomass growth at a C/N ratio of 60.Using a comparative proteomic approach,combining two-dimensional gel electrophoresis,matrix-assisted laser desorption ionization time-of-flight/time-of-flight liquid chromatography-mass spectrometry,and tandem mass spectrometry,proteins with modified expression in the nitrogen-limited (C/N ratio 60) Monascus filamentous cells were identified.The results revealed that the deregulated proteins identified were involved in amino acid biosynthesis,protein translation,antioxidant-related enzymes,glycolysis,and transcriptional regulation.The results suggested that,under nitrogen limitation-induced suppression of protein translation and of expression of the related energy-generating enzymes,nitrogen limitation induced a switch of metabolic flux from glycolysis to the tricarboxylic acid (TCA) cycle for maintaining cellular energy homeostasis,resulting in repression of the metabolic shift of the polyketide biosynthesis pathway for red pigment production.
机译:红曲菌具有独特的经济产生许多次生代谢物的能力,但是,氮限制对红曲菌次生代谢物产生和代谢性能的影响仍然不清楚。在20至60范围内变化的碳/氮(C / N)比硝酸葡萄糖培养基培养红曲霉菌的研究结果表明,在C / N为60的条件下,红色素的产生比细胞生物量的生长显着地抑制了红色素的产生,并且对氮素的吸收更为敏感。电泳,基质辅助激光解吸电离飞行时间/飞行时间液相色谱-质谱和串联质谱,在氮限制(C / N比为60)的红曲霉丝状细胞中表达被修饰的蛋白质是结果表明,鉴定出的失控蛋白与氨基酸的生物合成,蛋白翻译,抗氧化作用有关。结果表明,在氮限制诱导的蛋白质翻译和相关能量产生酶表达的抑制下,氮限制诱导了代谢通量从糖酵解转变为三羧酸(TCA)循环可维持细胞能量的动态平衡,从而抑制聚酮化合物生物合成途径的代谢位移,从而产生红色色素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号