...
首页> 外文期刊>Dalton transactions: An international journal of inorganic chemistry >Excited state decay of cyclometalated polypyridine ruthenium complexes: insight from theory and experiment
【24h】

Excited state decay of cyclometalated polypyridine ruthenium complexes: insight from theory and experiment

机译:环金属化聚吡啶钌配合物的激发态衰减:理论和实验的启示

获取原文
获取原文并翻译 | 示例

摘要

Deactivation pathways of the triplet metal-to-ligand charge transfer ((MLCT)-M-3) excited state of cyclometalated polypyridine ruthenium complexes with [RuN5C](+) coordination are discussed on the basis of the available experimental data and a series of density functional theory calculations. Three different complex classes are considered, namely with [Ru(N<^>N)(2)(N<^>C)](+), [Ru(N<^>N<^>N)(N<^>C<^>N)](+) and [Ru(N<^>N<^>N) (N<^>N<^>C)](+) coordination modes. Excited state deactivation in these complex types proceeds via five distinct decay channels. Vibronic coupling of the (MLCT)-M-3 state to high-energy oscillators of the singlet ground state ((1)GS) allows tunneling to the ground state followed by vibrational relaxation (path A). A ligand field excited state ((MC)-M-3) is thermally accessible via a (MLCT)-M-3 -> (MC)-M-3 transition state with the (MC)-M-3 state being strongly coupled to the (1)GS surface via a low-energy minimum energy crossing point (path B). Furthermore, a (MLCT)-M-3. (1)GS surface crossing point directly couples the triplet and singlet potential energy surfaces (path C). Charge transfer states either with higher singlet character or with different orbital parentage and intrinsic symmetry restrictions are thermally populated which promote non-radiative decay via tunneling to the (1)GS state (path D). Finally, the excited state can decay via phosphorescence (path E). The dominant deactivation pathways differ for the three individual complex classes. The implications of these findings for isoelectronic iridium(III) or iron(II) complexes are discussed. Ultimately, strategies for optimizing the emission efficiencies of cyclometalated polypyridine complexes of d(6)-metal ions, especially Ru-II, are suggested.
机译:基于可获得的实验数据和一系列实验,讨论了具有[RuN5C](+)配位的环金属化聚吡啶钌配合物的三重态金属-配体电荷转移((MLCT)-M-3)激发态的失活途径。密度泛函理论计算。考虑了三个不同的复杂类,即[Ru(N <^> N)(2)(N <^> C)](+),[Ru(N <^> N <^> N)(N <^ > C <^> N)](+)和[Ru(N <^> N <^> N)(N <^> N <^> C)](+)协调模式。这些复杂类型的激发态失活通过五个不同的衰减通道进行。 (MLCT)-M-3状态与单线基态((1)GS)的高能振荡器的振动耦合允许隧穿到基态,然后进行振动弛豫(路径A)。配体场激发态((MC)-M-3)可通过(MLCT)-M-3->(MC)-M-3过渡态与(MC)-M-3态强耦合进行热访问通过低能量最小能量交叉点(路径B)到达(1)GS表面。此外,还有(MLCT)-M-3。 (1)GS表面交叉点直接耦合三重态和单重态势能表面(路径C)。具有较高单重态特征或具有不同轨道亲子关系和固有对称性限制的电荷转移状态会被热填充,从而通过隧穿到(1)GS状态(路径D)来促进非辐射衰减。最后,激发态可以通过磷光衰减(路径E)。对于三个单独的复杂类别,主要的失活途径不同。讨论了这些发现对等电子铱(III)或铁(II)配合物的影响。最终,提出了优化d(6)-金属离子,尤其是Ru-II的环金属化聚吡啶配合物的发射效率的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号