...
首页> 外文期刊>Dalton transactions: An international journal of inorganic chemistry >A comparative study on the structural, optical and magnetic properties of Fe3O4 and Fe3O4@SiO2 core-shell microspheres along with an assessment of their potentiality as electrochemical double layer capacitors
【24h】

A comparative study on the structural, optical and magnetic properties of Fe3O4 and Fe3O4@SiO2 core-shell microspheres along with an assessment of their potentiality as electrochemical double layer capacitors

机译:Fe3O4和Fe3O4 @ SiO2核壳微球的结构,光学和磁性性质的比较研究,以及它们作为电化学双层电容器的潜力的评估

获取原文
获取原文并翻译 | 示例

摘要

Herein, we report a comprehensive and comparative study on the crystal structure, and microstructural, optical, magnetic, hyperfine and electrochemical properties of Fe3O4 microspheres (S1) of diameter similar to 418 nm and Fe3O4@SiO2 core-shell microspheres (S2) of diameter similar to 570 nm. Each asymmetric unit of the crystalline Fe3O4 has one cation vacancy at the octahedral [B] site. At 300 K the saturation magnetization and coercivity of ferrimagnetically ordered S1 and S2 are 63.5, 38.5 emu g(-1) and 200 and 120 Oe, respectively. We have shown that the synthesis procedure, morphology, surface properties, interparticle interaction manifesting the collective properties of the nanoparticle assembly and the average size of individual Fe3O4 nanoparticles forming the spherical ensemble play a crucial role in determining the magnetic properties of Fe3O4 and Fe3O4@SiO2 microspheres while the diameter of the microsphere does not have significant influence on magnetic properties of such a system. Further, the photoluminescence intensity of Fe3O4 microspheres gets significantly enhanced upon SiO2 coating. A cyclic voltammetric study suggests that S1 can act as a good electrical double layer capacitor (EDLC) above a scan rate of 0.04 V s(-1) while S2 exhibits excellent performance as EDLC in a scan range from 0.01 to 0.06 V s(-1). Thus, S2 is a potential candidate for fabrication of EDLCs.
机译:在此,我们对直径类似于418 nm的Fe3O4微球(S1)和直径为Fe3O4 @ SiO2核-壳微球(S2)的晶体结构以及微结构,光学,磁性,超精细和电化学性质进行了全面的比较研究。类似于570 nm。晶体Fe3O4的每个不对称单元在八面体[B]位均具有一个阳离子空位。在300 K时,铁磁有序S1和S2的饱和磁化强度和矫顽力分别为63.5、38.5 emu g(-1)和200和120 Oe。我们已经表明,合成过程,形貌,表面性质,颗粒间相互作用表明了纳米颗粒组装体的集体性质以及形成球形集合体的单个Fe3O4纳米颗粒的平均尺寸在决定Fe3O4和Fe3O4 @ SiO2的磁性方面起着至关重要的作用微球的直径对这种系统的磁性能没有重大影响。此外,SiO 2涂层显着增强了Fe 3 O 4微球的光致发光强度。循环伏安研究表明,S1可以在0.04 V s(-1)的扫描速率以上充当良好的双电层电容器(EDLC),而S2在0.01至0.06 V s(-)的扫描范围内表现出出色的EDLC性能。 1)。因此,S2是制造EDLC的潜在候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号