...
首页> 外文期刊>Dalton transactions: An international journal of inorganic chemistry >A Bi-doped Li3V2(PO4)(3)/C cathode material with an enhanced high-rate capacity and long cycle stability for lithium ion batteries
【24h】

A Bi-doped Li3V2(PO4)(3)/C cathode material with an enhanced high-rate capacity and long cycle stability for lithium ion batteries

机译:用于锂离子电池的具有高倍率容量和长循环稳定性的Bi掺杂Li3V2(PO4)(3)/ C正极材料

获取原文
获取原文并翻译 | 示例

摘要

Bi-doped compounds Li3V2-xBix(PO4)(3)/C (x = 0, 0.01, 0.03, 0.05, 0.07) are prepared by a sol-gel method. The effects of Bi doping on the physical and electrochemical properties of Li3V2(PO4)(3) are investigated. X-ray diffraction (XRD) analysis indicates that Bi doping does not change the monoclinic structure of Li3V2(PO4)(3). A detailed analysis of the XRD patterns suggests that Bi3+ ions partly enter into the crystal structure of Li3V2(PO4)(3) and enlarge the lattice volume of Li3V2(PO4)(3). According to the results of cycle and rate performance measurements, moderate Bi3+ doping is beneficial in improving the electrochemical properties of Li3V2(PO4)(3). Among all the samples, Li3V1.97Bi0.03(PO4)(3)/C shows the best cycle and rate performance. At 3.0-4.3 V, the initial discharge capacity of Li3V1.97Bi0.03(PO4)(3)/C is as high as 130 mA h g(-1), close to the theoretical specific capacity of 133 mA h g(-1). The capacity retention of Li3V1.97Bi0.03(PO4)(3)/C is almost 100% after 100 cycles at 3.0-4.3 V. In addition, Li3V1.97Bi0.03(PO4)(3)/C exhibits excellent low-temperature and high-rate performance. Impedance spectroscopy (EIS) and cyclic voltammetry (CV) curves indicate lower charge transfer resistance and a larger Li ion diffusion rate of Li3V1.97Bi0.03(PO4)(3)/C than the primary Li3V2(PO4)(3)/C. The excellent electrochemical performance of Li3V1.97Bi0.03(PO4)(3)/C can be attributed to its larger Li ion diffusion channels, higher electronic conductivity, higher structural stability and smaller particle size.
机译:通过溶胶-凝胶法制备双掺杂的化合物Li3V2-xBix(PO4)(3)/ C(x = 0、0.01、0.03、0.05、0.07)。研究了Bi掺杂对Li3V2(PO4)(3)的物理和电化学性能的影响。 X射线衍射(XRD)分析表明,Bi掺杂不会改变Li3V2(PO4)(3)的单斜晶结构。 X射线衍射图谱的详细分析表明,Bi3 +离子部分进入Li3V2(PO4)(3)的晶体结构,并扩大了Li3V2(PO4)(3)的晶格体积。根据循环和速率性能测量的结果,适度的Bi3 +掺杂有利于改善Li3V2(PO4)(3)的电化学性能。在所有样品中,Li3V1.97Bi0.03(PO4)(3)/ C显示出最佳的循环和速率性能。在3.0-4.3 V时,Li3V1.97Bi0.03(PO4)(3)/ C的初始放电容量高达130 mA hg(-1),接近理论比容量133 mA hg(-1) 。 Li3V1.97Bi0.03(PO4)(3)/ C在3.0-4.3 V下经过100次循环后的容量保持率几乎为100%。此外,Li3V1.97Bi0.03(PO4)(3)/ C表现出优异的低温度和高速率性能。阻抗谱(EIS)和循环伏安法(CV)曲线表明,与主要的Li3V2(PO4)(3)/ C相比,Li3V1.97Bi0.03(PO4)(3)/ C的电荷转移电阻更低,并且锂离子扩散速率更大。 Li3V1.97Bi0.03(PO4)(3)/ C的出色电化学性能可归因于其更大的Li离子扩散通道,更高的电子电导率,更高的结构稳定性和更小的粒径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号