...
首页> 外文期刊>Surface & Coatings Technology >Efficient numerical prediction of residual stress and deformation for large-scale laser shock processing using the eigenstrain methodology
【24h】

Efficient numerical prediction of residual stress and deformation for large-scale laser shock processing using the eigenstrain methodology

机译:使用特征应变方法的大型激光冲击加工残余应力和变形的有效数值预测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Laser shock processing (LSP) is an effective but costly process for inducing compressive residual stresses and deformation that are primarily applied in the aerospace industry. Accurate modeling of the LSP process with optimization is helpful to reduce development time and cost, but the simulation time is computationally expensive due to the long duration to capture the transient response of the material for each shock. In the present research, the eigenstrain modeling method is developed to predict the effect of large-scale LSP more efficiently compared with previous methods. In the developed eigenstrain-based method, residual stress and deformation fields are analyzed elastically using the simulated eigenstrain as initial strain, which is incorporated into the model by thermal expansion with a predefined unit temperature field and different anisotropic thermal expansion coefficients. For the large-scale LSP application, the eigenstrain in one representative cell identified through an explicit analysis is proposed as an approximation of the actual full eigenstrain field for efficient prediction. The predictions are verified by the predicted results from the explicit/implicit method for laser peening (LP) and the pure explicit method for laser peen forming (LPF) and are also validated by the experimental results of a single LP surface treatment of Ti6Al4V and a LPF bending of 1060 pure aluminum plates. Compared with the previous methods, the eigenstrain modeling method is proved to be effective and much more computationally efficient.
机译:激光冲击处理(LSP)是一种有效的但昂贵的过程,可引起压缩残余应力和变形,主要用于航空航天工业。通过优化对LSP过程进行精确建模有助于减少开发时间和成本,但由于捕获每种冲击的材料的瞬态响应的持续时间较长,因此仿真时间的计算量很大。在本研究中,与以前的方法相比,本征应变建模方法被开发来更有效地预测大型LSP的效果。在已开发的基于本征应变的方法中,使用模拟本征应变作为初始应变来弹性分析残余应力和变形场,并通过具有预定单位温度场和不同各向异性热膨胀系数的热膨胀将其合并到模型中。对于大规模LSP应用,提出了通过显式分析确定的一个代表性小区中的本征应变,作为实际全本征应变场的近似值,以进行有效的预测。预测结果通过显式/隐式激光喷丸法(LP)和纯显式激光喷丸成形(LPF)的预测结果得到验证,并且还通过Ti6Al4V和LP的单次LP表面处理的实验结果得到验证。 LPF弯曲的1060纯铝板。与以前的方法相比,本征应变建模方法被证明是有效的,并且在计算上更加有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号