...
首页> 外文期刊>The Journal of Experimental Biology >The extraordinary joint material of an articulated coralline alga. II. Modeling the structural basis of its mechanical properties
【24h】

The extraordinary joint material of an articulated coralline alga. II. Modeling the structural basis of its mechanical properties

机译:铰接珊瑚藻的非凡关节材料。二。模拟其机械性能的结构基础

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

By incorporating joints into their otherwise rigid fronds, erect coralline algae have evolved to be as flexible as other seaweeds, which allows them to thrive - and even dominate space - on wave-washed shores around the globe. However, to provide the required flexibility, the joint tissue of Calliarthron cheilosporioides, a representative articulated coralline alga, relies on an extraordinary tissue that is stronger, more extensible and more fatigue resistant than that of other algae. Here, we used the results from recent experiments to parameterize a conceptual model that links the microscale architecture of cell walls to the adaptive mechanical properties of joint tissue. Our analysis suggests that the theory of discontinuous fiber-wound composite materials (with cellulose fibrils as the fibers and galactan gel as the matrix) can explain key aspects of the material's mechanics. In particular, its adaptive viscoelastic behavior can be characterized by two, widely separated time constants. We speculate that the short time constant (similar to 14 s) results from the viscous response of the matrix to the change in cell-wall shape as a joint is stretched, a response that allows the material both to remain flexible and to dissipate energy as a frond is lashed by waves. We propose that the long time constant (similar to 35 h), is governed by the shearing of the matrix between cellulose fibrils. The resulting high apparent viscosity ensures that joints avoid accumulating lethal deformation in the course of a frond's lifetime. Our synthesis of experimental measurements allows us to draw a chain of mechanistic inference from molecules to cell walls to fronds and community ecology.
机译:通过将节理并入原本坚硬的叶状体中,直立的珊瑚藻已演化为与其他海藻一样的柔韧性,这使它们能够在全球被波浪冲刷的海岸上繁衍生息,甚至占据主导地位。但是,为了提供所需的柔韧性,Calliarthron cheilosporioides(一种有关节的珊瑚藻)的关节组织依赖于一种非凡的组织,该组织比其他藻类更结实,更可扩展且更耐疲劳。在这里,我们使用最新实验的结果对概念模型进行参数化,该模型将细胞壁的微尺度结构与关节组织的自适应机械性能联系起来。我们的分析表明,不连续纤维缠绕复合材料的理论(以纤维素原纤维为纤维,半乳聚糖为基质)可以解释该材料力学的关键方面。特别是,它的自适应粘弹性能可以通过两个相互分开的时间常数来表征。我们推测,短时间常数(约14 s)是由于关节拉伸时基体对细胞壁形状变化的粘性响应而产生的,该响应使材料既保持柔韧性又耗散了能量。叶被波涛猛冲。我们建议长时间常数(类似于35 h)是由纤维素原纤维之间的基质剪切决定的。所产生的高表观粘度可确保接头避免在叶的使用寿命过程中积聚致命的变形。我们对实验测量结果的综合使我们能够得出从分子到细胞壁到叶状体和群落生态学的一系列机理推断。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号