...
首页> 外文期刊>The Journal of Experimental Biology >Flying high: limits to flight performance by sparrows on the Qinghai-Tibet Plateau
【24h】

Flying high: limits to flight performance by sparrows on the Qinghai-Tibet Plateau

机译:高空飞行:青藏高原麻雀对飞行性能的限制

获取原文
获取原文并翻译 | 示例
           

摘要

Limits to flight performance at high altitude potentially reflect variable constraints deriving from the simultaneous challenges of hypobaric, hypodense and cold air. Differences in flight-related morphology and maximum lifting capacity have been well characterized for different hummingbird species across elevational gradients, but relevant within-species variation has not yet been identified in any bird species. Here we evaluate load-lifting capacity for Eurasian tree sparrow (Passer montanus) populations at three different elevations in China, and correlate maximum lifted loads with relevant anatomical features including wing shape, wing size, and heart and lung masses. Sparrows were heavier and possessed more rounded and longer wings at higher elevations; relative heart and lung masses were also greater with altitude, although relative flight muscle mass remained constant. By contrast, maximum lifting capacity relative to body weight declined over the same elevational range, while the effective wing loading in flight (i.e. the ratio of body weight and maximum lifted weight to total wing area) remained constant, suggesting aerodynamic constraints on performance in parallel with enhanced heart and lung masses to offset hypoxic challenge. Mechanical limits to take-off performance may thus be exacerbated at higher elevations, which may in turn result in behavioral differences in escape responses among populations.
机译:对高空飞行性能的限制可能反映出来自低压,低密度和冷空气同时挑战的各种限制。对于跨越高度梯度的不同蜂鸟物种,已经很好地描述了与飞行有关的形态和最大提升能力的差异,但是尚未在任何鸟类中发现相关的物种内变异。在这里,我们评估了中国三个不同海拔高度的欧亚树麻雀(Passer montanus)种群的起重能力,并将最大起重载荷与相关的解剖特征(包括机翼形状,机翼大小以及心肺质量)相关联。麻雀较重,在更高的海拔高度上有更多的圆形和更长的翅膀;尽管相对飞行肌肉质量保持恒定,但相对心脏和肺部质量随海拔高度也变大。相比之下,在相同的海拔范围内,相对于体重的最大起重能力下降,而飞行中的有效机翼载荷(即,体重与最大起重量的比值与机翼总面积之比)保持恒定,这表明空气动力学限制了并行运行增强心脏和肺部质量以抵消低氧挑战。因此,在较高的海拔高度下,起飞性能的机械极限可能会加剧,进而可能导致人群逃生反应的行为差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号