首页> 外文期刊>The Journal of Physiology >Cerebellar ataxias: beta-III spectrin's interactions suggest common pathogenic pathways
【24h】

Cerebellar ataxias: beta-III spectrin's interactions suggest common pathogenic pathways

机译:小脑性共济失调:β-III血影蛋白的相互作用提示常见的致病途径

获取原文
获取原文并翻译 | 示例
           

摘要

Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of disorders all characterised by postural abnormalities, motor deficits and cerebellar degeneration. Animal and in vitro models have revealed beta-III spectrin, a cytoskeletal protein present throughout the soma and dendritic tree of cerebellar Purkinje cells, to be required for the maintenance of dendritic architecture and for the trafficking and/or stabilisation of several membrane proteins: ankyrin-R, cell adhesion molecules, metabotropic glutamate receptor-1 (mGluR1), voltage-gated sodium channels (Na-v) and glutamate transporters. This scaffold of interactions connects beta-III spectrin to a wide variety of proteins implicated in the pathology of many SCAs. Heterozygous mutations in the gene encoding beta-III spectrin (SPTBN2) underlie SCA type-5 whereas homozygous mutations cause spectrin associated autosomal recessive ataxia type-1 (SPARCA1), an infantile form of ataxia with cognitive impairment. Loss-of beta-III spectrin function appears to underpin cerebellar dysfunction and degeneration in both diseases resulting in thinner dendrites, excessive dendritic protrusion with loss of planarity, reduced resurgent sodium currents and abnormal glutamatergic neurotransmission. The initial physiological consequences are a decrease in spontaneous activity and excessive excitation, likely to be offsetting each other, but eventually hyperexcitability gives rise to dark cell degeneration and reduced cerebellar output. Similar molecular mechanisms have been implicated for SCA1, 2, 3, 7, 13, 14, 19, 22, 27 and 28, highlighting alterations to intrinsic Purkinje cell activity, dendritic architecture and glutamatergic transmission as possible common mechanisms downstream of various loss-of-function primary genetic defects. A key question for future research is whether similar mechanisms underlie progressive cerebellar decline in normal ageing.
机译:脊髓小脑共济失调(SCAs)是一组遗传异质性疾病,均以体位异常,运动功能障碍和小脑变性为特征。动物和体外模型表明,β-III血影蛋白是小脑浦肯野细胞的整个体细胞和树突状树中存在的一种细胞骨架蛋白,是维持树突状结构以及运输和/或稳定几种膜蛋白(锚蛋白)所必需的。 -R,细胞粘附分子,代谢型谷氨酸受体1(mGluR1),电压门控钠通道(Na-v)和谷氨酸转运蛋白。这种相互作用的支架将β-III血影蛋白连接到许多与许多SCA病理相关的蛋白质上。编码β-III血影蛋白(SPTBN2)的基因中的杂合突变是SCA 5型的基础,而纯合突变则导致血影蛋白相关的常染色体隐性共济失调1型(SPARCA1),这是一种具有认知障碍的小儿共济失调形式。在这两种疾病中,β-III血影蛋白功能的丧失似乎都支持小脑功能障碍和变性,导致树突变薄,树突突出过多,平面度降低,钠离子电流降低和谷氨酸能神经传递异常。最初的生理后果是自发活动的减少和过度的兴奋,可能相互抵消,但最终过度兴奋会导致黑细胞变性和小脑输出减少。 SCA1、2、3、7、13、14、19、22、27和28也涉及相似的分子机制,强调了固有的Purkinje细胞活性,树突结构和谷氨酸能传递的改变是各种损失的下游可能的常见机制。功能原发性遗传缺陷。未来研究的一个关键问题是,正常衰老过程中类似的机制是否是小脑进行性下降的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号