首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Nanoscale Solvation Leads to Spontaneous Formation of a Bicarbonate Monolayer on Rutile (110) under Ambient Conditions: Implications for CO2 Photoreduction
【24h】

Nanoscale Solvation Leads to Spontaneous Formation of a Bicarbonate Monolayer on Rutile (110) under Ambient Conditions: Implications for CO2 Photoreduction

机译:纳米级溶剂化导致在环境条件下在金红石(110)上自发形成碳酸氢盐单层:对CO2光还原的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The chemical state of a catalyst in operando is particularly important for catalysts that target minority species, such as atmospheric CO, which has a concentration of only 400 ppm. A reaction can be promoted by the selective binding of reactants or hindered by molecules that block active sites. We show that adsorbed CO2, a very weakly bonded species on TiO2, is unlikely to play the key role in CO, photoreduction under ambient conditions, at least on rutile (110), as the vast majority of unsaturated Ti sites are terminated by a different, much more strongly bound carbonaceous species: adsorbed bicarbonate (HCO3). Using a combination of scanning tunneling microscopy (STM) and surface spectroscopies, we show that atmospheric CO, readily and stably displaces adsorbed H2O on rutile (110), creating a self-assembled monolayer of HCO3 and H that is stable at room temperature even in vacuum. This reaction occurs on near-ideal, stoichiometric rutile (110) and does not require surface defects, such as 0 vacancies, Ti interstitials, or steps. This reaction is promoted both by the strong bidentate bonding of HCO3 as well as the nanoscale H2O film that spontaneously forms on TiO2 under ambient conditions. Density functional theory calculations show that the nanoscale water layer adsorbed to rutile (110) solvates the products and changes the reaction energetics significantly. The chemical state of the catalyst in operando will also be affected by the half-monolayer of adsorbed H produced by the reactive dissociation of H2O.
机译:操作中催化剂的化学状态对于靶向少数物种(例如浓度仅为400 ppm的大气CO)的催化剂尤为重要。反应物可以通过反应物的选择性结合来促进,也可以通过阻断活性位点的分子来阻止。我们表明,吸附的CO2(在TiO2上非常弱的键合物种)不太可能在CO(在环境条件下,至少在金红石(110)上)的光还原中起关键作用,因为绝大多数不饱和Ti位置被不同的末端终止,结合更牢固的碳质物质:吸附的碳酸氢盐(HCO3)。通过结合使用扫描隧道显微镜(STM)和表面光谱学,我们发现大气中的CO可以轻松,稳定地置换金红石(110)上吸附的H2O,从而形成了HCO3和H的自组装单层,即使在室温下也可以在室温下稳定真空。该反应发生在接近理想的化学计量的金红石(110)上,不需要表面缺陷,例如0空位,Ti间隙或台阶。 HCO3的强双齿键以及在环境条件下在TiO2上自发形成的纳米级H2O膜都促进了该反应。密度泛函理论计算表明,吸附在金红石(110)上的纳米级水层使产物溶剂化,并显着改变了反应能。操作中催化剂的化学状态也将受到H2O反应性离解产生的吸附H的半单层的影响。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号