...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Structural and Electronic Property Study of (ZnO)(n), n = 168: Transition from Zinc Oxide Molecular Clusters to Ultrasmall Nanoparticles
【24h】

Structural and Electronic Property Study of (ZnO)(n), n = 168: Transition from Zinc Oxide Molecular Clusters to Ultrasmall Nanoparticles

机译:(ZnO)(n),n <= 168的结构和电子性质研究:从氧化锌分子簇到超小纳米颗粒的转变

获取原文
获取原文并翻译 | 示例
           

摘要

Global minimum energy structures of (ZnO)(n), n <= 168, were determined by using a hybrid genetic algorithm followed by a local geometry optimization at the density functional theory level. New "magic number" structures were found for the (ZnO)(n) clusters and ultrasmall nanoparticles. Particles with morphologies of single-, double-, and triple-layered octahedral cages exhibit higher stability than particles with other morphologies. (ZnO)(132) and (ZnO)(168) are found to be triple layer cages with a diameter of similar to 2 nm in each dimension. The normalized clustering energies (average cohesive energies) of the multilayered zinc oxide cages can be extrapolated, to provide an estimate of the bulk limit. The surface energy densities of the ultrasmall nanoparticles are almost constant. The relatively high stability of the multilayered particles is attributed to the lack of terminal surface atoms and the effective interlayer stacking of hexagonal cells, as the layers in the particles are intact and hexagonally tiled. The epitaxial structural evolution pattern for zinc oxide ultrasmall nanoparticles can be used to predict the most energetically favorable structural evolution pathways connecting clusters and nanoparticles with different morphologies. It is hypothesized that zinc oxide nanoparticles with different morphologies (such as cylinder and octahedron) can be synthesized by using different seeds to initialize the epitaxial growth. The zinc oxide nanoparticles synthesized following our proposed growth mechanism will be predominately terminated by the wurtzite 0001 surface. The band gap of a spherical zinc oxide nanoparticle is predicted to be a linear function of the inverse of the nanoparticle diameter.
机译:(ZnO)(n)的全局最小能量结构(n <= 168)是通过使用混合遗传算法,然后在密度泛函理论水平上进行局部几何优化来确定的。发现(ZnO)(n)团簇和超小纳米粒子的新“魔数”结构。具有单层,双层和三层八面体笼形貌的颗粒比具有其他形貌的颗粒表现出更高的稳定性。发现(ZnO)(132)和(ZnO)(168)是三层笼子,每个维度的直径都近似于2 nm。可以推断出多层氧化锌笼的归一化聚集能(平均内聚能),以提供对体积极限的估计。超小纳米颗粒的表面能密度几乎是恒定的。多层颗粒的较高稳定性归因于末端表面原子的缺乏和六角形单元的有效层间堆叠,因为颗粒中的层是完整的且六角形平铺的。氧化锌超小纳米粒子的外延结构演化模式可用于预测连接簇和具有不同形态的纳米粒子的最有利于能量的结构演化路径。假设可以通过使用不同的种子来初始化外延生长来合成具有不同形态(例如圆柱体和八面体)的氧化锌纳米粒子。按照我们提出的生长机理合成的氧化锌纳米粒子将主要被纤锌矿0001表面终止。球形氧化锌纳米颗粒的带隙被预测为纳米颗粒直径的倒数的线性函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号