首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Subpicosecond Exciton Dynamics in Polyfluorene Films from Experiment and Microscopic Theory
【24h】

Subpicosecond Exciton Dynamics in Polyfluorene Films from Experiment and Microscopic Theory

机译:基于实验和微观理论的聚芴薄膜的亚皮秒激子动力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Electronic energy transfer (EET) in organic materials is a key mechanism that controls the efficiency of many processes, including light harvesting antennas in natural and artificial photosynthesis, organic solar cells, and biological systems. In this paper we have examined EET in solid-state thin-films of polyfluorene, a prototypical conjugated polymer, with ultrafast photoluminescence experiments and theoretical modeling. We observe EET occurring on a 680 +/- 300 fs time scale by looking at the depolarisation of photoluminescence. An independent, predictive microscopic theoretical model is built by defining 125 000 chromophores containing both spatial and energetic disorder appropriate for a spin coated thin film. The model predicts time-dependent exciton dynamics, without any fitting parameters, using the incoherent Forster-type hopping model. Electronic coupling between the chromophores is calculated by an improved version of the usual line dipole model for resonant energy transfer. Without the need for higher level interactions, we find that the model is in general agreement with the experimentally observed 680 +/- 300 fs depolarisation caused by EET. This leads us to conclude that femtosecond EET in polyfluorene can be described well by conventional resonant energy transfer, as long as the relevant microscopic parameters are well captured. The implications of this finding are that dipole-dipole resonant energy transfer can in some circumstances be fully adequate to describe ultrafast EET without needing to invoke strong or intermediate coupling mechanisms.
机译:有机材料中的电子能量转移(EET)是控制许多过程效率的关键机制,包括自然和人工光合作用中的光收集天线,有机太阳能电池和生物系统。在本文中,我们通过超快光致发光实验和理论模型研究了聚芴(一种典型的共轭聚合物)固态薄膜中的EET。通过观察光致发光的去极化现象,我们观察到EET发生在680 +/- 300 fs的时间范围内。通过定义包含适用于旋涂薄膜的空间和高能紊乱的125,000个发色团,建立了一个独立的,可预测的微观理论模型。该模型使用非相干的Forster型跳变模型来预测随时间变化的激子动力学,而无需任何拟合参数。发色团之间的电子耦合通过用于共振能量转移的常规线偶极子模型的改进版本进行计算。不需要更高水平的相互作用,我们发现该模型与实验观察到的由EET引起的680 +/- 300 fs去极化基本吻合。这使我们得出结论,只要可以很好地捕获相关的微观参数,就可以通过常规的共振能量转移很好地描述聚芴中的飞秒EET。这一发现的含义是,偶极子-偶极子共振能量转移在某些情况下可以完全描述超快EET,而无需调用强大或中间的耦合机制。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号