首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Computational Study of Lithium Titanate as a Possible Cathode Material for Solid-State Lithium-Sulfur Batteries
【24h】

Computational Study of Lithium Titanate as a Possible Cathode Material for Solid-State Lithium-Sulfur Batteries

机译:钛酸锂作为固态锂硫电池正极材料的计算研究

获取原文
获取原文并翻译 | 示例
       

摘要

LiS cells are currently built with metallic lithium as node, a liquid electrolyte, and a cathode composed of a mixture of sulfur, carbon, and binder. While this type of cell produces good capacity during the early cycles, unwanted reactions with the electrolyte degrade the cathode and anode; making the whole cell not competitive with Li-ion batteries. A viable solution to mitigate this problem is the replacement of the carbon, binder, and electrolyte with a ceramic matrix, with high electronic and ionic conductivity. Lithium titanate (Li4Ti5O12) spinel may be a potential candidate for the fabrication of composite cathodes, due to its mechanical robustness and its high electronic and Li-ion conductivity. In this paper, we present an ab initio molecular dynamics study complemented with experimental investigations, offering a novel interpretation for the Li-ion mobility in Li4Ti5O12 and Li7Ti5O12 as well as for the chemical reactivity of these materials with molecular sulfur. Also, we present a model for the passivation of Li4Ti5O12 and Li7Ti5O12 surfaces by lithium carbonate, addressing both Li-ion mobility at the interface and sulfur reactivity. On the basis of our results, the deployment of Li4Ti5O12 and Li7Ti5O12 materials for sulfur-based battery technology is questioned mainly by the lower Li-ion conductivity of the carbonate-passivated surfaces and by the chemical reactivity of Li7Ti5O12 with sulfur molecules, which would lead to self-discharge, with resulting loss of capacity and inferior battery performance.
机译:LiS电池目前以金属锂为节点,液体电解质以及由硫,碳和粘合剂的混合物组成的阴极构成。尽管这种类型的电池在早期循环中会产生良好的容量,但与电解液发生的不良反应会使阴极和阳极退化;使得整个电池无法与锂离子电池竞争。缓解此问题的可行解决方案是用具有高电子和离子导电性的陶瓷基质代替碳,粘合剂和电解质。钛酸锂(Li4Ti5O12)尖晶石由于其机械坚固性以及高电子和锂离子传导性,可能是制造复合阴极的潜在候选者。在本文中,我们提供了从头开始的分子动力学研究,并辅以实验研究,从而为Li4Ti5O12和Li7Ti5O12中的锂离子迁移率以及这些材料与分子硫的化学反应性提供了新颖的解释。此外,我们提出了一种通过碳酸锂钝化Li4Ti5O12和Li7Ti5O12表面的模型,解决了界面处的锂离子迁移率和硫反应性。根据我们的研究结果,主要是由于碳酸盐钝化表面的锂离子电导率较低以及Li7Ti5O12与硫分子的化学反应性,使得Li4Ti5O12和Li7Ti5O12材料用于硫基电池技术的部署受到质疑。自放电,导致容量损失和劣质电池性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号