...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Density Functional Theory Computational Study of Alkali Cation-Exchanged Sodalite-like Zeolite like Metal-Organic Framework for CO2, N-2, and CH4 Adsorption
【24h】

Density Functional Theory Computational Study of Alkali Cation-Exchanged Sodalite-like Zeolite like Metal-Organic Framework for CO2, N-2, and CH4 Adsorption

机译:碱阳离子交换方钠石样沸石如金属有机骨架对CO2,N-2和CH4吸附的密度泛函理论计算研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Porous adsorbents are promising for carbon capture and other industrially important gas separations, for example, CO2/N-2/CH4 separations. Zeolitelike metal-organic frameworks (ZMOFs), a new subclass of MOFs, have charged frameworks, similar to conventional zeolites, which endow them with promising potential such as a high adsorption capacity and different selective molecular admission schemes from those observed in zeolites. This paper presents a density functional theory computational study of alkali cation-exchanged sodalite-like ZMOF (sod-ZMOF) for CO2, N-2, and CH4 adsorption. We found that large Cs+ cations favor sites close to the pore aperture so that three Cs+ cations form a positively charged gate, controlling the admission of gas molecules. These gases have an expected sequence of binding energy values: Delta E-ads(CO2) > Delta E-ads (CH4) > Delta E-ads(N-2). Interestingly, the energy barrier of gases passing through the gates shows an unusual sequence: Delta E-a(CO2) > Delta E-a(N-2) > Delta E-a(CH4). This sequence can be largely attributed to their energy levels at the centers of the gates formed by Cs cations. The electrostatic interaction between the positively charged gate and CO2 leads to a much higher energy level at the gate center. This is in contrast to the corresponding zeolite structures, where the apertures are enclosed by negatively charged oxygen atoms. In light of similar molecular structures at the apertures of all reported ZMOFs, our study suggests a new design route in which, by appropriate selection of extraframework cations, a unique positively charged gate can be designed that can lead to different gas admission behavior from conventional zeolite materials.
机译:多孔吸附剂有望用于碳捕获和其他工业上重要的气体分离,例如CO2 / N-2 / CH4分离。类分子筛金属有机骨架(ZMOF)是MOF的一个新的子类,具有类似于常规沸石的带电荷骨架,这赋予了它们广阔的潜力,例如高吸附能力和不同于在沸石中观察到的选择性分子接纳方案。本文介绍了密度泛函理论计算研究碱性阳离子交换方钠石状ZMOF(sod-ZMOF)对CO2,N-2和CH4的吸附。我们发现大的Cs +阳离子倾向于靠近孔的位置,因此三个Cs +阳离子形成带正电的门,从而控制气体分子的进入。这些气体具有预期的结合能值顺序:Delta E-ads(CO2)> Delta E-ads(CH4)> Delta E-ads(N-2)。有趣的是,通过门的气体的能垒显示了一个不寻常的顺序:Delta E-a(CO2)> Delta E-a(N-2)> Delta E-a(CH4)。该序列可以很大程度上归因于它们在由Cs阳离子形成的栅极中心处的能级。带正电的栅极与CO2之间的静电相互作用会导致栅极中心的能级高得多。这与相应的沸石结构相反,在沸石结构中,孔被带负电的氧原子包围。在所有报告ZMOFs的孔类似的分子结构的光,我们的研究表明,其中一个新的设计途径,通过骨架外阳离子的适当的选择,独特的带正电荷的栅极可以被设计,可导致从常规沸石不同气体进入行为材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号