首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Rate of Molecular Exchange through the Membranes of Ionic Liquid Filled Polymersomes Dispersed in Water
【24h】

Rate of Molecular Exchange through the Membranes of Ionic Liquid Filled Polymersomes Dispersed in Water

机译:通过分散在水中的离子液体填充聚合物囊泡膜的分子交换速率

获取原文
获取原文并翻译 | 示例
           

摘要

The permeation of l-ethyl-3-methylimidazolium ([EMIM]), l-butyl-3-methylimidazolium ([BMIM]), and 1-butylimidazole through the bilayer membranes of nanoemulsion-like polymersomes was investigated by nuclear magnetic resonance spectroscopy (NMR) techniques. 1,2-Polybutadiene-b-poly(ethylene oxide) (PB—PEO) polymersomes in the ionic liquid (IL) l-ethyl-3-methylimidazoIium bis-(trifluoromethylsulfonyl)imide ([EMIM][TFSI]) were prepared by a cosolvent method and then migrated to the aqueous phase, which is not miscible with the IL, at room temperature. In this way stable, nanoscopic domains of the IL (average diameter ca. 200 nm) were dispersed in water. Two similarly sized molecules, charged [EMIM] and neutral 1-butylimidazole, were employed as tracer molecules, and proton NMR (~1H NMR) and pulsed-field-gradient NMR (PFG-NMR) experiments were conducted. Furthermore, transient 'H NMR was used with [BMIM] to estimate how rapidly the charged molecules can go through the hydrophobic membrane into the polymersome interior. The molecules in the nanoemulsion solution showed two distinct sets of peaks due to the magnetic susceptibility difference across the membrane. This difference in ~1H NMR gave direct evidence of permeation of the molecules and the relative populations within the polymersomes versus in the aqueous exterior. The escape and entry rates were evaluated by fitting the PEG-NMR echo decay curves with a two-site exchange model. The molecules could permeate through the hydrophobic PB membranes on a time scale of seconds, but the entry and escape rates for the charged molecule ([EMIM]) were approximately 10 times slower than the neutral molecule (l-butylimidazole). These results confirm that this system has the potential to serve as a nanoreactor, facilitating reactions with various kinds of molecules including both charged and neutral molecules. It combines the facile transport and mixing of a majority aqueous phase with the multiple advantages of IL as a reaction medium. The ability to shuttle the polymersomes reversibly between aqueous and ionic liquid phases offers a convenient route to product separation and catalyst recovery.
机译:通过核磁共振波谱法研究了1-乙基-3-甲基咪唑鎓(EMIM),1-丁基-3-甲基咪唑鎓(BMIM)和1-丁基咪唑在纳米乳液状聚合物囊体的双层膜中的渗透性( NMR)技术。离子液体(IL)1-乙基-3-甲基咪唑鎓双-(三氟甲基磺酰基)酰亚胺([EMIM] [TFSI])中的1,2-聚丁二烯-b-聚环氧乙烷(PB-PEO)聚合物囊泡助溶剂方法,然后在室温下迁移到与IL不混溶的水相中。以这种方式,将IL的纳米级稳定域(平均直径约200 nm)分散在水中。使用两个相似大小的分子,即带电[EMIM]和中性1-丁基咪唑作为示踪剂分子,并进行了质子NMR(〜1H NMR)和脉冲场梯度NMR(PFG-NMR)实验。此外,瞬态1 H NMR与[BMIM]一起用于估算带电分子可以多快地通过疏水膜进入聚合物囊内部。由于跨膜的磁化率差异,纳米乳液溶液中的分子显示出两组不同的峰。 〜1H NMR中的这种差异直接证明了分子的渗透以及聚合物囊体内相对于水性外部的相对种群。通过将PEG-NMR回波衰减曲线与两点交换模型拟合来评估逃逸率和进入率。分子可以在几秒钟的时间内通过疏水性PB膜渗透,但是带电分子([EMIM])的进入和逸出速度比中性分子(1-丁基咪唑)慢约10倍。这些结果证实,该系统具有用作纳米反应器的潜力,可促进与各种分子的反应,包括带电分子和中性分子。它结合了大多数水相的便捷运输和混合以及IL作为反应介质的多重优势。将聚合物囊泡可逆地在水相和离子液相之间穿梭的能力为产物分离和催化剂回收提供了便利的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号