...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Toward a Molecular Understanding of Energetics in Li-S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study
【24h】

Toward a Molecular Understanding of Energetics in Li-S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study

机译:对使用非水电解质的锂硫电池能量学的分子理解:高级量子化学研究

获取原文
获取原文并翻译 | 示例

摘要

The Li-S battery (secondary cell or redox flow) technology is a promising future alternative to the present lithium intercalation-based energy storage, and, therefore, a molecular level understanding of the chemical processes and properties such as stability of intermediates, reactivity of polysulfides, and reactivity toward the nonaqueous electrolytes in the Li-S batteries is of great interest. In this paper, quantum chemical methods (G4MP2, MP2, and B3LYP) were utilized to compute reduction potentials of lithium polysulfides and polysulfide molecular clusters, energetics of disproportionation and association reactions of likely intermediates, and their reactions with ether-based electrolytes. Based on the computed reaction energetics in solution, a probable mechanism during the discharge process for polysulfide anions and lithium polysulfides in solution is proposed and likely intermediates such as S_4~(2-), S_3~(2-), S_2~(2-), and S_3~(1-) radical were identified. Additionally, the stability and reactivity of propylene carbonate and tetraglyme solvent molecules were assessed against the above-mentioned intermediates and other reactive species by computing the reaction energetics required to initiate the solvent decomposition reactions in solution. Calculations suggest that the propylene carbonate molecule is unstable against the polysulfide anions such as S_2~(2-), S_3~(2-), and S_4~(2-) (△H < 0.8 eV) and highly reactive toward Li2S2 and Li2S3. Even though the tetraglyme solvent molecule exhibits increased stability toward polysulfide anions compared to propylene carbonate, this molecule too is vulnerable to nucleophilic attack from Li2S2 and Li2S3 species in solutions. Hence, long-term stability of the ether molecules is unlikely if a high concentration of these reactive intermediates is present in the Li-S energy storage systems.
机译:Li-S电池(二次电池或氧化还原流)技术是当前基于锂插层的储能技术的有希望的未来替代方法,因此,从分子水平上了解化学过程和性质,例如中间体的稳定性,反应性Li-S电池中的多硫化物和对非水电解质的反应性引起了极大的兴趣。在本文中,利用量子化学方法(G4MP2,MP2和B3LYP)来计算多硫化锂和多硫化物分子簇的还原电势,可能的中间体的歧化和缔合反应的能级,以及它们与醚基电解质的反应。基于计算的溶液反应能,提出了溶液中多硫化物阴离子和多硫化锂放电过程中的可能机理,以及可能的中间体如S_4〜(2-),S_3〜(2-),S_2〜(2- )和S_3〜(1-)自由基。另外,通过计算引发溶液中溶剂分解反应所需的反应能,评估了碳酸亚丙酯和四甘醇二甲醚溶剂分子相对于上述中间体和其他反应性物种的稳定性和反应性。计算表明,碳酸亚丙酯分子对多硫化物阴离子如S_2〜(2-),S_3〜(2-)和S_4〜(2-)不稳定(△H <0.8 eV),并且对Li2S2和Li2S3具有高反应性。尽管与碳酸亚丙酯相比,四甘醇二甲醚溶剂分子对多硫化物阴离子显示出更高的稳定性,但该分子也容易受到溶液中Li2S2和Li2S3物种的亲核攻击。因此,如果在Li-S储能系统中存在高浓度的这些反应性中间体,则醚分子的长期稳定性是不可能的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号