...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Exploiting Weak Noncovalent Cation···π Interaction for Designing a Molecular Container for Storage of Methane Molecules with Lithiated Carbene Superbases
【24h】

Exploiting Weak Noncovalent Cation···π Interaction for Designing a Molecular Container for Storage of Methane Molecules with Lithiated Carbene Superbases

机译:利用弱的非共价阳离子···π相互作用设计带化碳烯超碱的甲烷分子存储容器

获取原文
获取原文并翻译 | 示例
           

摘要

This study reports the multiprotonation sites exploiting noncovalent interactions to achieve hyperbasicity of an uncharged organic base. A new class of carbene based organic superbase has been designed to attain the proton affinity (PA) value of 301.9 kcal/mol at M06-2X/6- 311+G**//B3LYP/6-31+G* level of theory. These designed scaffold molecules can possess three independent protonation sites, which is not available in the literature to date. The stabilization of the protonated forms of the superbases by noncovalent interactions such as C—H~+ ···π interaction is responsible for augmenting the basicity of such carbene systems. The DFT calculated results show that such carbene systems can be suitable candidate for tris-protonation with pK_a(MeCN) value of 43.3 and proton affinity value (MeCN) of 312.1 kcal/mol. Molecular electrostatic potential (MESP) analysis shows the existence of electron density at the reactive sites and the role of substituents to enhance the electron density in such designed systems. There is a good correlation with the absolute minima of the MESP (V_(min)) located for such carbene systems with their calculated proton affinity values. The frontier molecular orbital energy of such carbenes also shows a good relationship with their proton affinity results. These carbene systems can be utilized further for selective binding of lithium ions over sodium ions. Such lithiated organic superbases can be used as a molecular container for the storage of hydrogen and methane molecules. The energy decomposition analysis (EDA) has been performed to explain the role of various factors which contribute to the total binding strength of the hydrogen or methane molecules with lithiated carbene superbases. The localized molecular orbital energy decomposition analysis reveals that the electrostatic and polarization effects are the major contributing factors in interactions with methane and hydrogen molecules. This is the first report where the organic superbase has been exploited as efficient methane storage materials.
机译:这项研究报告了利用非共价相互作用实现不带电有机碱的超碱性的多质子化位点。已设计出一类新的基于卡宾的有机超碱,以在理论水平M06-2X / 6- 311 + G ** // B3LYP / 6-31 + G *时达到301.9 kcal / mol的质子亲和力(PA)值。这些设计的支架分子可以具有三个独立的质子化位点,迄今为止在文献中尚无。通过非共价相互作用(例如CH〜+···π相互作用)来稳定超碱的质子化形式,是增强此类卡宾系统碱性的原因。 DFT计算结果表明,这种卡宾系统可以作为三质子化的合适候选物,其pK_a(MeCN)值为43.3,质子亲和力值(MeCN)为312.1 kcal / mol。分子静电势(MESP)分析表明,在这种设计的系统中,反应位点处存在电子密度,并且取代基具有增强电子密度的作用。与此类卡宾系统的MESP的绝对最小值(V_(min))与其计算出的质子亲和力值有很好的相关性。此类卡宾的前沿分子轨道能量也与其质子亲和力结果显示出良好的关系。这些卡宾体系可进一步用于锂离子与钠离子的选择性结合。这种锂化的有机超碱可用作储存氢和甲烷分子的分子容器。进行了能量分解分析(EDA),以解释各种因素的作用,这些因素有助于氢或甲烷分子与锂化卡宾超碱的总结合强度。局部分子轨道能量分解分析表明,静电和极化效应是与甲烷和氢分子相互作用的主要因素。这是第一份有机超碱已被用作有效甲烷存储材料的报告。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号