首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Entropy-Driven Molecular Separations in 2D-Nanoporous Materials, with Application to High-Performance Paraffin/Olefin Membrane Separations
【24h】

Entropy-Driven Molecular Separations in 2D-Nanoporous Materials, with Application to High-Performance Paraffin/Olefin Membrane Separations

机译:二维纳米孔材料中的熵驱动分子分离及其在高性能石蜡/烯烃膜分离中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Nanometer-scale pores in carbon-based materials such as graphene, carbon nanotubes, and two-dimensional polymers have emerged as a promising approach to high permeance, high selectivity gas separation membranes. In previous studies, quantum-mechanical mass-dependent tunneling, classical size-exclusion and differences in surface adsorption have been used to obtain high selectivity. Here, we illustrate a new classical approach in which an entropic barrier causes the selective separation of gas molecules. Using atomistic molecular dynamics simulations, we study the separation of ethane, ethene, propane, propene, n-butane, isobutane, 1-butene, ds-2-butene, trans-2-butene, isobutene, and 1,3-butadiene through a novel nanoporous two-dimensional hydrocarbon polymer (denoted PG-TP!), as a function of temperature and pressure. Despite the absence of a potential energy barrier for both types of species and the greater surface adsorption of the paraffins, selective passage of olefins results from the greater number of possible conformational and orientational configurations possible within the small pores. This entropic barrier allows for differentiation of similar gases, such as ethane and ethene or propane and propene. Larger branched alkanes and alkenes are completely rejected by size exclusion. The PG-TP1 selectivity exceeds practical requirements for economical separations of propene and 1,3-butadiene; moreover, the high permeances (10 × 10~6 and 17 × 10~6 GPU (gas permeation units), respectively) greatly exceed all existing membrane materials by 5 orders of magnitude.
机译:碳基材料(例如石墨烯,碳纳米管和二维聚合物)中的纳米级孔已成为一种高渗透率,高选择性气体分离膜的有前途的方法。在以前的研究中,量子力学依赖质量的隧穿,经典的尺寸排阻和表面吸附差异已被用来获得高选择性。在这里,我们说明了一种新的经典方法,其中熵屏障导致气体分子的选择性分离。使用原子分子动力学模拟,我们研究了乙烷,乙烯,丙烷,丙烯,正丁烷,异丁烷,1-丁烯,ds-2-丁烯,反-2-丁烯,异丁烯和1,3-丁二烯的分离一种新型的纳米多孔二维烃聚合物(称为PG-TP!),它是温度和压力的函数。尽管对于两种类型的物质都没有潜在的势垒,并且石蜡的表面吸附更大,但是烯烃的选择性通过是由于小孔内可能存在的更多可能的构象和取向构型导致的。该熵屏障允许区分相似的气体,例如乙烷和乙烯或丙烷和丙烯。较大的支链烷烃和烯烃被尺寸排阻完全排斥。 PG-TP1的选择性超出了丙烯和1,3-丁二烯经济分离的实际要求;此外,高磁导率(分别为10×10〜6和17×10〜6 GPU(气体渗透单元))大大超过所有现有膜材料5个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号