...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Atomistic Insights into Early Stage Oxidation and Nanoscale Oxide Growth on Fe(100), Fe(111) and Fe(110) Surfaces
【24h】

Atomistic Insights into Early Stage Oxidation and Nanoscale Oxide Growth on Fe(100), Fe(111) and Fe(110) Surfaces

机译:Fe(100),Fe(111)和Fe(110)表面早期氧化和纳米级氧化物生长的原子学见解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Reactive molecular dynamics (MD) simulations with dynamic charge transfer between atoms is used to investigate the oxidation kinetics during the early stages of nanoscale oxide growth on Fe(lOO), Fe(III), and Fe(llO) surfaces. The growth rate of the oxide layer was found to follow logarithmic time dependence, with limiting thicknesses ranging from 1 to 2 nm depending on the crystal orientation. Temperature and pressure effects were studied for the three surface geometries, with the (110) surface exhibiting a stronger dependence compared to the (100) and (111) counterpart. Structure and dynamical correlations in the metal/oxide/gas environments are used to gain insights into the evolution and morphology of the growing oxide film. The surface structure is found to strongly influence not only the morphology of the oxide but also the stoichiometry of the oxide layer formed. Stoichiometry of the oxide layer formed at room temperature shows evidence for the presence of a nonstoichoimetric oxide layer consisting of two phases: a surface layer dominant with mixed oxide (Fe_xO_y with y/x ≈ 1.3—1.5) oxides and a bulk layer of Fe_xO_y, with y/x ≈ 0.7—0.8. This is found to be directly related to the propagation of the oxide growth through the thin film. The relative fractions and near surface distribution of the mixed oxides are dictated by the differences in cationic/anionic diffusivities which are strongly dependent on the crystal surfaces, consistent with previously established experimental observations. At any given oxidation condition, the activation energy barrier for oxidation was found to be lowest for Fe(110) (7.44 KJ/mol) compared to the other two surfaces (23.69 KJ/mol for Fe(100) and 19.88 KJ/molfor Fe(III)). The differences in oxide formation in the early stages of oxidation are explained in terms of the transport characteristics of the anion/cation for the various crystal orientations. The simulation findings agree well with previously reported experimental observations of oxidation on Fe surfaces.
机译:具有原子间动态电荷转移的反应性分子动力学(MD)模拟用于研究纳米级氧化物在Fe(100),Fe(III)和Fe(110)表面上生长的早期阶段的氧化动力学。发现氧化物层的生长速率遵循对数时间依赖性,取决于晶体取向,极限厚度范围为1-2nm。研究了三种表面几何形状的温度和压力效应,与(100)和(111)相比,(110)表面表现出更强的依赖性。金属/氧化物/气体环境中的结构和动力学相关性可用于深入了解正在生长的氧化膜的演变和形态。发现表面结构不仅强烈影响氧化物的形态,而且强烈影响形成的氧化物层的化学计量。室温下形成的氧化物层的化学计量表明存在着由两相组成的非化学计量的氧化物层:混合氧化物(Fe_xO_y,y / x≈1.3-1.5)占主导地位的表面层和Fe_xO_y体层, y / x≈0.7-0.8。发现这与氧化物生长通过薄膜的传播直接相关。混合氧化物的相对含量和近表面分布是由阳离子/阴离子扩散率的差异所决定的,而阳离子/阴离子扩散率的差异主要取决于晶体表面,这与先前建立的实验观察一致。在任何给定的氧化条件下,与其他两个表面(Fe(100)为23.69 KJ / mol和Fe(100)为19.88 KJ / mol)相比,Fe(110)的氧化活化能垒最低(III))。氧化早期阶段氧化物形成的差异是根据阴离子/阳离子在各种晶体取向下的传输特性来解释的。模拟结果与先前报道的铁表面氧化的实验观察结果非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号