...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Oxidation of Silanes to Silanols on Pd Nanoparticles: H2 Desorption Accelerated by Surface Oxygen Atom
【24h】

Oxidation of Silanes to Silanols on Pd Nanoparticles: H2 Desorption Accelerated by Surface Oxygen Atom

机译:钯纳米粒子上硅烷氧化成硅烷醇:表面氧原子加速的H2解吸

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The oxidation of silane to silanol on the clean and oxygen-covered Pd(111) surface is investigated with periodic density functional theory calculations to gain a better understanding of the effect of surface oxygen atom on Pd nanoparticle catalysts. The calculations confirmed that this catalytic reaction is initiated by the dissociative adsorption of silane on the Pd surface. The resultant silyl group is attacked by a water molecule to form silanol and an H atom on the Pd surface with inversion of configuration at the Si center. An activation energy of 11.3 kcal/ mol is required for the water addition, and the transition state for this step is energetically highest in the entire reaction profile. These computational results are in good agreement with our stereochemical and kinetic studies. The H atoms on the Pd surface inhibit further reaction, and therefore, they should be removed to achieve the catalytic activity experimentally. We found that the role of the surface oxygen atom is to facilitate the desorption of H2 from the Pd surface without the formation of OH and H2O. The introduction of surface oxygen atoms can enhance the catalytic ability of metal nanoparticles for green organic reactions.
机译:用周期性密度泛函理论计算研究了在清洁的和氧气覆盖的Pd(111)表面上硅烷氧化为硅烷醇的过程,以更好地了解表面氧原子对Pd纳米颗粒催化剂的影响。该计算证实了该催化反应是由硅烷在Pd表面上的解离吸附引发的。所得的甲硅烷基被水分子攻击,在Pd表面上形成硅醇和H原子,并且Si中心的构型反转。加水需要11.3 kcal / mol的活化能,并且该步骤的过渡态在整个反应过程中在能量上最高。这些计算结果与我们的立体化学和动力学研究非常吻合。 Pd表面的H原子会抑制进一步的反应,因此,应将其除去以实现实验上的催化活性。我们发现表面氧原子的作用是促进H2从Pd表面解吸,而不会形成OH和H2O。表面氧原子的引入可以增强金属纳米颗粒对绿色有机反应的催化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号