...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Plasma-Mediated Nanocavitation and Photothermal Effects in Ultrafast Laser Irradiation of Gold Nanorods in Water
【24h】

Plasma-Mediated Nanocavitation and Photothermal Effects in Ultrafast Laser Irradiation of Gold Nanorods in Water

机译:等离子体介导的纳米空化和光热效应在水中金纳米棒的超快激光辐照中

获取原文
获取原文并翻译 | 示例

摘要

We present a theoretical and experimental study that reveals the physical mechanism underlying the response of an in-resonance gold nanorod (AuNR) in water to a near-infrared ultrafast laser pulse. Results reveal the presence of two different regimes of interaction, depending on the irradiation fluence. For fluences below 3 mj/cm~2, AuNRs are in the so-called absorption regime and are shown to strongly absorb energy, leading to a fast temperature increase revealed by the onset of characteristic mechanical vibration of the structure. In situ measurement demonstrates a permanent deformation of the AuNRs occurring for fluences over 100 μJ/cm . In the absorption regime, we show the formation of a nanoscale plasma around the structure, dominated by a photothermal emission from the AuNR, and the generation of a pressure wave. However, no cavitation occurs under the deformation threshold fluence (100 μJ/cm~2). For fluences over 3 mj/cm2, in the near-field regime, the energy transfer is dominated by the enhanced near-field around the particle that directly ionizes and heats a nanoplasma in the surrounding water. We theoretically show that bubbles with diameters ≈ 490 nm can be generated in this near-field regime for an incident fluence of 200 mj/cm~2. In situ optical characterization of the produced bubbles supports this result and shows that bubbles with diameters ≈ 200—600 nm can be generated for fluences ranging 100—400 mj/cm~2. Important shielding of the laser—nanostructure interaction by the surrounding plasma is shown to decrease considerably the near-field enhancement, the energy absorption, and the diameter of the generated bubbles and may explain the smaller bubbles generated around in-resonance 10 X 41 nm~2 AuNRs when compared to off-resonance 25 X 60 nm~2 AuNRs and 100 nm AuNPs.
机译:我们提出了一项理论和实验研究,揭示了水中共振金纳米棒(AuNR)对近红外超快激光脉冲响应的物理机制。结果表明,取决于辐照通量,存在两种不同的相互作用方式。对于低于3 mj / cm〜2的能量密度,AuNRs处于所谓的吸收状态,并且显示出强烈吸收能量的能力,这导致结构的特征性机械振动开始而导致温度快速升高。原位测量表明,对于注量超过100μJ/ cm的AuNRs会发生永久变形。在吸收方式中,我们显示了在结构周围形成纳米级等离子体的过程,其中主要是来自AuNR的光热发射以及压力波的产生。但是,在变形阈值通量(100μJ/ cm〜2)下没有发生空化现象。对于通量超过3 mj / cm2的能量,在近场状态下,能量传递受粒子周围增强的近场控制,该粒子直接电离并加热周围水中的纳米等离子体。从理论上讲,对于200 mj / cm〜2的入射通量,在这种近场状态下可以产生直径≈490 nm的气泡。所产生气泡的原位光学表征支持了这一结果,并表明对于注量范围为100-400 mj / cm〜2的气泡,可以生成直径≈200-600 nm的气泡。重要的激光-纳米结构与周围等离子体之间的相互作用被显着屏蔽,可显着降低近场增强,能量吸收和所产生气泡的直径,并可以解释在共振10 X 41 nm附近产生的较小气泡。与非共振25 X 60 nm〜2 AuNRs和100 nm AuNPs相比,有2个AuNRs。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号