...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Atomic-Scale Processes at the Fluorite-Water Interface Visualized by Frequency Modulation Atomic Force Microscopy
【24h】

Atomic-Scale Processes at the Fluorite-Water Interface Visualized by Frequency Modulation Atomic Force Microscopy

机译:通过频率调制原子力显微镜观察萤石-水界面的原子尺度过程

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The crystal growth and dissolution processes of a fluorite (CaF2) crystal have attracted much attention due to the importance in the industrial, environmental, and medical applications. While previous studies clarified nanoscale processes at the fluorite—water interface, atomic-scale origins of the processes have yet to be understood. In this study, we have investigated atomic-scale processes at the fluorite—water interface by frequency modulation atomic force microscopy (FM-AFM). We performed atomic-resolution imaging of a fluorite(111) surface in water (pH = 2 and 6.5), saturated solution (pH = 2 and 6), and supersaturated solution (pH = 6, σ= 10 and 100). Based on the results, we present three major findings. First, atomic-scale roughening of the crystal surface takes place at low pH due to the proton adsorption. Second, surface adsorbates with a subnanometer-scale height are formed on the crystal surface at high pH. They are most likely to be calcium hydroxo complexes physisorbed on the crystal surface. Finally, the formation of these complexes can be suppressed by increasing fluorite concentration owing to the increased proportion of Ca~(2+) and F~- in the electric double layer. These findings mark an important step toward the full understanding of the physicochemical processes at the fluorite—water interface.
机译:萤石(CaF2)晶体的晶体生长和溶解过程由于在工业,环境和医学应用中的重要性而备受关注。尽管先前的研究澄清了萤石-水界面的纳米级过程,但该过程的原子级起源尚待了解。在这项研究中,我们通过调频原子力显微镜(FM-AFM)研究了萤石-水界面的原子尺度过程。我们对水(pH = 2和6.5),饱和溶液(pH = 2和6)和过饱和溶液(pH = 6,σ= 10和100)中的萤石(111)表面进行了原子分辨率成像。基于结果,我们提出了三个主要发现。首先,由于质子吸附,晶体表面的原子级粗糙化在低pH下发生。第二,在高pH下,在晶体表面形成亚纳米级高度的表面吸附物。它们最有可能是物理吸附在晶体表面的钙羟基复合物。最后,由于双电层中Ca〜(2+)和F〜-的比例增加,可以通过增加萤石浓度来抑制这些络合物的形成。这些发现标志着全面了解萤石-水界面的物理化学过程的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号