...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Density Functional Theory Study of Mechanism of N2O Decomposition over Cu-ZSM-5 Zeolites
【24h】

Density Functional Theory Study of Mechanism of N2O Decomposition over Cu-ZSM-5 Zeolites

机译:Cu-ZSM-5分子筛上N2O分解机理的密度泛函理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

The N2O decomposition mechanism is investigated over Cu-ZSM-S using density functional theory (DFT). Though the mechanism is extended from Fe/Co-ZSM-5, the results show that a different step may be rate-determining over Cu-ZSM-S compared to the Fe/Co-ZSM-S system. In the beginning, Z[Cu] as active center decomposes the first N2O and generates Z[CuO] (process 1), and the energy barrier of N2O dissociation is 35.18 kcal/mol. Then Z[CuO] could decompose the second N2O and generate Z[CuOO] (process 2), and the energy barrier of N2O dissociation is 28.07 kcal/mol. In process 2, oxygen could desorb from Z[CuOO], and the desorption energy is 39.48 kcal/mol, which is only higher 4.30 kcal/mol than 35.18 kcal/mol in the process 1. However the corresponding rate constants show approximately that the rate-limiting step is O2 desorption in process 2 and not the N2O dissociation in process 1. Next, if Z[CuOO] could not desorb O2, it could decompose the third N2O and generate Z[CuO(O2)] (process 3). In this process, the energy barrier for N2O dissociation and the O2 desorption energy from Z[CuO(O2)] are 42.10 and 63.42 kcal/mol, respectively, which are much higher than the former processes. It indicates the presence of O2 could inhibit the N2O decomposition over Cu-ZSM-5, which is in line with the kinetic experiment. The results suggest the process 1 and 2 are the main catalytic cycle in N2O decomposition. Importantly, O2 desorption from Z[CuOO] shows that the mechanism over Cu-ZSM-5 is different from that over Fe/Co-ZSM-5 system.
机译:利用密度泛函理论(DFT)研究了Cu-ZSM-S上N2O的分解机理。尽管该机制是从Fe / Co-ZSM-5扩展而来的,但结果表明,与Fe / Co-ZSM-S系统相比,在Cu-ZSM-S上确定速率的步骤可能不同。首先,以Z [Cu]为活性中心分解第一N2O并生成Z [CuO](过程1),N2O离解的能垒为35.18 kcal / mol。然后Z [CuO]分解第二N2O并生成Z [CuOO](过程2),N2O离解的能垒为28.07 kcal / mol。在方法2中,氧气可以从Z [CuOO]中解吸,其解吸能量为39.48 kcal / mol,仅比方法1中的35.18 kcal / mol高4.30 kcal / mol。但是相应的速率常数表明,限速步骤是过程2中的O2解吸,而不是过程1中的N2O解离。接下来,如果Z [CuOO]无法解吸O2,则它可以分解第三N2O并生成Z [CuO(O2)](过程3) 。在此过程中,N2O离解的能垒和Z [CuO(O2)]的O2解吸能分别为42.10和63.42 kcal / mol,远高于以前的过程。这表明O2的存在可以抑制N2O在Cu-ZSM-5上的分解,这与动力学实验相符。结果表明过程1和2是N2O分解的主要催化循环。重要的是,氧气从Z [CuOO]解吸表明,Cu-ZSM-5上的机理与Fe / Co-ZSM-5系统上的机理不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号