首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Mg-Fe Thin Films: A Phase-Separated Structure with Fast Kinetics of Hydrogenation
【24h】

Mg-Fe Thin Films: A Phase-Separated Structure with Fast Kinetics of Hydrogenation

机译:Mg-Fe薄膜:具有快速加氢动力学的相分离结构

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this paper we suggest a new approach to improve the kinetics of hydrogenation based on a material with a high density of interfaces between hydride-forming solid (HFS) and hydrogen-diffusing solid media (HDM). Such materials can be realized for phase-separated systems when synthesized in the conditions limiting kinetics of phase separation, e.g., in thin film deposition. Mg-Fe was selected as a model system: (1) It has phase separation; (2) MgH2 is a high-capacity hydride; (3) Fe has high difrusivity of hydrogen. Mg_(1-x)Fe_x thin films (x = 0-0.30) capped with Pd were prepared by electron beam codeposition and their hydrogenation/ dehydrogenation kinetics and cycling properties were studied at 413 K. The structures of the thin films before and after hydrogenation during different cycles were investigated by X-ray diffraction and transmission electron microscopy. It has been found that there is a substantial improvement in hydrogen absorption and desorption kinetics for the Mg_(1-x)Fe_x films in comparison to pure Mg film. The improvement is attributed to the presence of Fe layers percolating throughout the Mg matrix. For the Mg_(1-x)Fe_x. films with x = 0.05-0.15 more than 3.5% mass fraction hydrogen can be absorbed under hydrogen pressures of 0.1 MPa in less than 2 min, and above 3.0% mass fraction hydrogen can be desorbed in 15 min. For x > 0.15 films, the reversible hydrogen storage properties degrade significantly; structural study of the higher concentration films shows the presence of a stable ternary hydride Mg2FeH6, formation of which is responsible for interruption of fast hydrogen delivery.
机译:在本文中,我们提出了一种基于氢化物形成固体(HFS)和氢扩散固体介质(HDM)之间具有高界面密度的材料来改善氢化动力学的新方法。当在限制相分离动力学的条件下,例如在薄膜沉积中合成时,可以针对相分离系统实现这种材料。选择了Mg-Fe作为模型系统:(1)具有相分离; (2)MgH2是高容量氢化物; (3)Fe具有高的氢分散性。通过电子束共沉积法制备了覆盖有Pd的Mg_(1-x)Fe_x薄膜(x = 0-0.30),并在413 K下研究了它们的加氢/脱氢动力学和循环性能。氢化前后的薄膜结构通过X射线衍射和透射电子显微镜研究在不同循环中的温度。已经发现,与纯Mg膜相比,Mg_(1-x)Fe_x膜的氢吸收和解吸动力学有显着改善。改善归因于整个镁基质中渗透的铁层的存在。对于Mg_(1-x)Fe_x。 x = 0.05-0.15的薄膜可在不到2分钟的时间内在0.1 MPa的氢气压力下吸收质量分数高于3.5%的氢,而在15分钟内可将质量分数高于3.0%的氢解吸。对于x> 0.15的薄膜,可逆的储氢性能会大大降低;反之,对高浓度薄膜的结构研究表明,存在稳定的三元氢化物Mg2FeH6,该三元氢化物的形成导致快速氢的输送中断。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号