首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations
【24h】

Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations

机译:正面和背面照明下基于TiO2纳米管阵列的染料敏化太阳能电池中的电子传输模式

获取原文
获取原文并翻译 | 示例
           

摘要

TiO2 nanotube arrays (NTA), of 17-37 μm in thickness, detached from anodic oxidized Ti foils were used as photoanodes for dye-sensitized solar cells (DSSCs). Photovoltaic measurements under frontside and backside illumination showed that frontside illumination geometry provided better cell performance than backside illumination did. A cell assembled with 30 μm. thick NTA film produced the greatest photocurrent and light conversion efficiency. Despite an advantageous architecture for electron transport, electron trapping remained a limiting factor for both illumination geometries, due to the presence of crystal grains in the NTA walls. Intensity-modulated photocurrent spectroscopy (IMPS) analysis showed that electron transport in the front-illuminated cells comprises both trap-free and trap-limited diffusion modes, whereas electrons in the back-illuminated cells travel only by trap-limited diffusion. The trap-free diffusion mechanism determines front-illuminated cell performance. Electrochemical impedance spectroscopy analysis showed the front-illuminated NTA-based DSSCs have a charge collection efficiency of better than 90%, even at 30 μm NTA film thickness. Large crystal size results in low trap state density in the NTA film, and this effect may result in a more extensive trap-free diffusion zone in the films, which facilitates charge collection.
机译:与阳极氧化的Ti箔分离的厚度为17-37μm的TiO2纳米管阵列(NTA)被用作染料敏化太阳能电池(DSSC)的光阳极。正面和背面照明下的光伏测量结果表明,正面照明几何形状提供的电池性能优于背面照明。组装成30μm的电池。厚的NTA膜产生最大的光电流和光转换效率。尽管电子传输具有有利的架构,但由于NTA壁中存在晶粒,因此电子俘获仍然是两种照明几何形状的限制因素。强度调制光电流能谱(IMPS)分析表明,前照式电池中的电子传输包括无陷阱和受陷阱限制的扩散模式,而背照式电池中的电子仅通过受陷阱限制的扩散而移动。无陷阱扩散机制决定了前照式电池的性能。电化学阻抗谱分析表明,即使在30μmNTA膜厚度下,基于前照明NTA的DSSC的电荷收集效率也优于90%。大的晶体尺寸导致NTA薄膜的陷阱态密度低,并且这种效应可能导致薄膜中更广泛的无陷阱扩散区,从而有利于电荷收集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号