...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Coverage-Dependent Behavior on Organic Functionalization of the Semiconductor X(100)-2 × 1 Surface (X = C, Si, and Ge) by Carbene, Silylene, Germylene, and Nitrene:A Periodic DFT Study
【24h】

Coverage-Dependent Behavior on Organic Functionalization of the Semiconductor X(100)-2 × 1 Surface (X = C, Si, and Ge) by Carbene, Silylene, Germylene, and Nitrene:A Periodic DFT Study

机译:碳,亚甲硅基,亚二甲苯和丁二烯对半导体X(100)-2×1表面(X = C,Si和Ge)的有机功能化的覆盖依赖性行为:定期DFT研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Coverage-dependent behavior for chemical functionalization of the semiconductor X(100) (X = C, Si, and Ge) surface by cycloadditions of organic molecules, including carbene (CH2), silylene (SiH2), germylene (GeH2), and nitrene (NH), has been investigated using density functional theory (DFT) coupled with periodic slab models. In particular, we have performed calculations on models with 1, 2, 4, and 8 of these organic molecules, corresponding to coverages of 0 = 0.125, 0.25, 0.5, and 1, respectively. The results demonstrate that the adsorption energies decrease when coverage is increased, being attributed to the intermolecular repulsion at high coverage. For the NH molecule, due to its smaller molecular size than CH2, SiH2, and GeH2, the adsorption energy is relatively insensitive to the variation of coverage. Interestingly, at the saturated coverage, the structure of as-formed monolayer organic film among C(100), Si(100), and Ge(100) is different. The large adsorption energies at the saturated coverage clearly suggest the feasibility of forming organic layer films of carbenes and nitrenes onto the semiconductor X(100) surface, thus leading to new hybrid multifunctional materials. In addition, it has also been found that the band gaps can be finely tuned by addition of organic layers onto the X(100) surface; for example, the band gap is significantly widened for the CH2/ C(100) and NH/C(100) systems at the saturated coverage in comparison to that of bare C(100). These suggest that there is a promising flexibility for engineering the semiconductor C( 100), Si(100), and Ge(100) surfaces by tuning the coverage and type of organic molecules, given the well-known abundance of carbene and nitrene chemistry.
机译:半导体X(100)(X = C,Si和Ge)表面化学功能化的覆盖范围依赖性行为,包括有机碳(CH2),亚甲硅烷基(SiH2),亚二甲基亚砜(GeH2)和亚硝基( NH),已使用密度泛函理论(DFT)结合周期性平板模型进行了研究。特别是,我们对具有1、2、4和8个这些有机分子的模型进行了计算,分别对应于0 = 0.125、0.25、0.5和1的覆盖率。结果表明,当覆盖率增加时,吸附能降低,这归因于高覆盖率下的分子间排斥。对于NH分子,由于其分子大小小于CH2,SiH2和GeH2,因此吸附能对覆盖率的变化相对不敏感。有趣的是,在饱和覆盖率下,C(100),Si(100)和Ge(100)之间形成的单层有机膜的结构不同。饱和覆盖率时的大吸附能清楚地表明了在半导体X(100)表面上形成碳烯和氮的有机层膜的可行性,从而导致了新型的混合多功能材料。另外,还发现可以通过在X(100)表面上添加有机层来微调带隙。例如,与裸露的C(100)相比,CH2 / C(100)和NH / C(100)系统在饱和覆盖下的带隙显着扩大。这些表明,在众所周知的卡宾和氮烯化学丰度很高的情况下,通过调整有机分子的覆盖范围和类型,可以对半导体C(100),Si(100)和Ge(100)表面进行工程改造,从而具有广阔的前景。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号