...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Control of the Crystalline Morphology of Poly(L-lactide) by Addition of High-Melting-Point Poly(L-lactide) and Its Effect on the Distribution of Multiwalled Carbon Nanotubes
【24h】

Control of the Crystalline Morphology of Poly(L-lactide) by Addition of High-Melting-Point Poly(L-lactide) and Its Effect on the Distribution of Multiwalled Carbon Nanotubes

机译:通过添加高熔点聚(L-丙交酯)控制聚(L-丙交酯)的结晶形态及其对多壁碳纳米管分布的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The key to fabricating conductive polymer/carbon nanotube (CNT) nanocomposites is controlling the distribution of CNTs in the polymer matrix. Here, an effective and simple approach for controlling the distribution of multiwalled CNTs (MWCNTs) is reported to largely improve the electrical conductivity of biodegradable poly(l-lactide) (PLLA) through crystalline morphology development by addition of high-melting-point PLLA (hPLLA) crystallites. hPLLA crystallites are efficient nucleating agents, increasing the crystallinity and crystallization rate of PLLA/MWCNT nanocomposites. Furthermore, the diameter of spherulites decreases from 9.7 to 1.0 mu m with an increase in the concentration of hPLLA from 0.03 to 3.0 wt %. The electrical conductivity of PLLA/MWCNT nanocomposites with 0.3 wt % MWCNTs greatly increases from 1.89 X 10(-15) to 1.56 X 10(-8) S/cm with an increase in the matrix crystallinity from 2.4 to 46.8% on introducing trace amounts of hPLLA (0.07 wt %). The percolation threshold of PLLA/MWCNT nanocomposites is reduced from 0.51 to 0.21 wt % on addition of 0.07 wt % hPLLA. The high electrical conductivity and low percolation threshold of PLLA/MWCNT nanocomposites incorporated with hPLLA are related to the high crystallinity and crystalline morphologies of the PLLA matrix. Big spherulites lock a lot of MWCNTs at the intervals in the spherulites, which is harmful to the electrical conductivity. Small spherulites, with large surface areas, also need more MWCNTs to form conductive networks in the amorphous regions. Most MWCNTs that are bundled together to form conductive paths are found in samples with mid-sized spherulites of similar to 6.7 mu m. More interestingly, the high crystallinity and reconstructed MWCNT network also enhanced the Young modulus, elongation at break, and elastic modulus at high temperature of PLLA/MWCNT nanocomposites with small amounts of hPLLA.
机译:制备导电聚合物/碳纳米管(CNT)纳米复合材料的关键是控制CNT在聚合物基质中的分布。在这里,据报道,一种有效而简单的控制多壁CNT(MWCNT)分布的方法通过添加高熔点的PLLA,通过晶体形态的发展大大提高了可生物降解的聚(l-丙交酯)(PLLA)的电导率( hPLLA)微晶。 hPLLA微晶是有效的成核剂,可提高PLLA / MWCNT纳米复合材料的结晶度和结晶速率。此外,随着hPLLA的浓度从0.03wt%增加到3.0wt%,球晶的直径从9.7μm减小到1.0μm。引入0.3 wt%MWCNTs的PLLA / MWCNT纳米复合材料的电导率从1.89 X 10(-15)S / cm大大增加到1.56 X 10(-8)S / cm,引入痕量后基质结晶度从2.4增加到46.8% hPLLA(0.07重量%)。通过添加0.07 wt%的hPLLA,PLLA / MWCNT纳米复合材料的渗透阈值将从0.51降低至0.21 wt%。掺入hPLLA的PLLA / MWCNT纳米复合材料的高电导率和低渗透阈值与PLLA基质的高结晶度和结晶形态有关。大的球晶以一定的间隔将许多MWCNT锁定在球晶中,这对导电性有害。具有大表面积的小球晶也需要更多的MWCNT在非晶区域中形成导电网络。在具有中等大小的球晶约6.7微米的样品中发现了大多数捆绑在一起以形成导电路径的MWCNT。更有趣的是,高结晶度和重构的MWCNT网络还增强了具有少量hPLLA的PLLA / MWCNT纳米复合材料在高温下的杨氏模量,断裂伸长率和弹性模量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号