首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Toward an Accurate Modeling of Hydrodynamic Effects on the Translational and Rotational Dynamics of Biomolecules in Many-Body Systems
【24h】

Toward an Accurate Modeling of Hydrodynamic Effects on the Translational and Rotational Dynamics of Biomolecules in Many-Body Systems

机译:对多体系统中生物分子的平移和旋转动力学的流体动力学效应的精确建模

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Proper treatment of hydrodynamic interactions is of importance in evaluation of rigid-body mobility tensors of biomolecules in Stokes flow and in simulations of their folding and solution conformation, as well as in simulations of the translational and rotational dynamics of either flexible or rigid molecules in biological systems at low Reynolds numbers. With macromolecules conveniently modeled in calculations or in dynamic simulations as ensembles of spherical frictional elements, various approximations to hydrodynamic interactions, such as the two-body, far-field Rotne-Prager approach, are commonly used, either without concern or as a compromise between the accuracy and the numerical complexity. Strikingly, even though the analytical Rotne-Prager approach fails to describe (both in the qualitative and quantitative sense) mobilities in the simplest system consisting of two spheres, when the distance between their surfaces is of the order of their size, it is commonly applied to model hydrodynamic effects in macromolecular systems. Here, we closely investigate hydrodynamic effects in two and three-body systems, consisting of bead shell molecular models, using either the analytical Rotne-Prager approach, or an accurate numerical scheme that correctly accounts for the many-body character of hydrodynamic interactions and their short-range behavior. We analyze mobilities, and translational and rotational velocities of bodies resulting from direct forces acting on them. We show, that with the sufficient number of frictional elements in hydrodynamic models of interacting bodies, the far-field approximation is able to provide a description of hydrodynamic effects that is in a reasonable qualitative as well as quantitative agreement with the description resulting from the application of the virtually exact numerical scheme, even for small separations between bodies.
机译:正确处理流体动力学相互作用对于评估斯托克斯流中生物分子的刚体迁移张量,模拟其折叠和溶液构象以及模拟生物中柔性或刚性分子的平移和旋转动力学非常重要。雷诺数小的系统。在计算或动态模拟中将大分子方便地建模为球形摩擦元件的集合时,通常会使用各种近似的流体动力学相互作用,例如两体,远场Rotne-Prager方法,而无需考虑或相互折衷精度和数值复杂度。令人惊讶的是,即使分析型Rotne-Prager方法无法在由两个球体组成的最简单系统中描述(在定性和定量意义上)迁移率,但当它们的表面之间的距离约为其大小时,通常会应用它建模大分子系统中的流体动力学效应。在这里,我们使用解析的Rotne-Prager方法或精确地解释水动力相互作用及其多体特征的精确数值方案,仔细研究了由珠壳分子模型组成的两体和三体系统的水动力效应。短程行为。我们分析了作用在物体上的直接力所导致的运动性以及物体的平移和旋转速度。我们证明,在相互作用体的流体力学模型中,有足够数量的摩擦元件,远场逼近能够提供对流体力学作用的描述,该描述在合理的定性和定量上与应用产生的描述一致实际上精确的数值方案,即使对于物体之间的微小间距也是如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号