首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Theoretical Study of the Electronic-Vibrational Coupling in the Q_y States of the Photosynthetic Reaction Center in Purple Bacteria Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
【24h】

Theoretical Study of the Electronic-Vibrational Coupling in the Q_y States of the Photosynthetic Reaction Center in Purple Bacteria Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China

机译:中国科学院紫细菌化学研究所光合反应中心Q_y态电子振动耦合的理论研究,北京中关村100190

获取原文
获取原文并翻译 | 示例
       

摘要

Inspired by the recent observation of correlated excitation energy fluctuations of neighboring chromophores (Lee et al. Science 2007, 316, 1462), quantum chemistry calculations and molecular dynamics simulations were employed to calculate the electronic—vibrational coupling in the excited states of the photosynthetic reaction center of purple bacteria Rhodobacter (Rb.) sphaeroides. The ground states and lowest excited (Q_y) states of isolated bacteriochlorophyll a (BChl a) and bacteriopheophytin (BPhe) molecules were first optimized using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Normal mode analyses were then performed to calculate the Huang—Rhys factors of the intramolecular vibrational modes. To account for intermolecular electronic—vibrational coupling, molecular dynamics simulations were first performed. The ZINDO/S method and partial charge coupling method were then used to calculate the excitation energy fluctuations caused by the protein environment and obtain the spectral density. No obvious correlations in transition energy fluctuations between BChl a and BPhe pigments were observed in the time scale of our MD simulation. Finally, by comparing the calculated absorption spectra with experimental ones, magnitudes of inhomogeneous broadening due to the static disorder were estimated. The large amplitude of the static disorder indicates that a large portion of the spectral density and their correlations may still be hidden in the inhomogeneous broadening due to the finite MD simulation time.
机译:受近期对邻近发色团的相关激发能波动的观察的启发(Lee等人,Science 2007,316,1462),采用量子化学计算和分子动力学模拟来计算光合反应激发态的电子-振动耦合。紫色细菌球形红球菌的中心。首先使用密度泛函理论(DFT)和时变密度泛函理论(TDDFT)对分离的细菌叶绿素a(BChl a)和细菌脱镁叶绿素(BPhe)分子的基态和最低激发(Q_y)状态进行了优化。然后进行正常模式分析以计算分子内振动模式的Huang-Rhys因子。为了考虑分子间的电子-振动耦合,首先进行了分子动力学模拟。然后使用ZINDO / S方法和部分电荷耦合方法来计算蛋白质环境引起的激发能波动,并获得光谱密度。在我们的MD模拟的时间尺度上,没有观察到BChla和BPhe颜料之间的跃迁能量涨落有明显的相关性。最后,通过将计算出的吸收光谱与实验吸收光谱进行比较,可以估算出由于静态紊乱引起的不均匀展宽的幅度。静态无序的大幅度表明,由于有限的MD模拟时间,频谱密度及其相关性的很大一部分仍可能隐藏在不均匀的展宽中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号