...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Mechanistic Insights into the Dissociation and Decomposition of Carbonic Acid in Water via the Hydroxide Route: An Ab Initio Metadynamics Study
【24h】

Mechanistic Insights into the Dissociation and Decomposition of Carbonic Acid in Water via the Hydroxide Route: An Ab Initio Metadynamics Study

机译:通过氢氧化物途径分解和分解碳酸在水中的机械机理:从头算动力学研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The dissociation and decomposition of carbonic acid (H2CO3) in water are important reactions in the pH regulation in blood, CO2 transport in biological systems, and the global carbon cycle, H2CO3 is known to have three conformers [cis—cis (CC), cis—trans (CT), and trans—trans (TT)], but their individual reaction dynamics in water has not been probed experimentally. In this paper, we have investigated the energetics and mechanisms of the conformational changes, dissociation (H2CO3 <=> HCO3~_+ H~+), and decomposition via the hydroxide route (HCO3~- → CO2 + OH~-) of all three conformers of H2CO3 in water using Car—Parrinello molecular dynamics (CPMD) in conjunction with metadynamics. It was found that, unlike in the gas phase, the interconversion between the various conformers occurs via two different pathways, one involving a change in one of the two dihedral angles (0=C-O-H) and the other a proton transfer through a hydrogen-bond wire. The free energy barriers/changes for the various conformational changes via the first pathway were calculated and contrasted with the previously calculated values for the gas phase. The CT and TT conformers were found to undergo decomposition in water via a two-step process: first, the dissociation and then the decomposition of HCO3 into CO2 and OH . The CC conformer does not directly decompose but first undergoes a conformational change to CT or TT prior to decomposition. This is in contrast with the concerted mechanism proposed for the gas phase, which involves a dehydroxylation of one of the OH groups and a simultaneous deprotonation of the other OH group to yield CO2 and H2O. The dissociation in water was seen to involve the repeated formation and breakage of a hydrogen-bond wire with neighboring water molecules, whereas the decomposition is initiated by the diffusion of H~+ away from HCO3~-; this decomposition mechanism differs from that proposed for the water route dehydration (HCO3~- + H3O~+ → CO2 + H2O), which involves the participation of a nearby H3O~+ ion. Our calculated pK_d values and decomposition free energy barriers for the CT and TT conformers are consistent with the overall experimental values of 3.45 and 22.28 kcal/mol, respectively, suggesting that the dynamics of the various conformers should be taken into account for a better understanding of aqueous H2CO3 chemistry.
机译:水中碳酸(H2CO3)的解离和分解是血液中pH调节,生物系统中CO2转运以及全球碳循环中的重要反应,已知H2CO3具有三个构象异构体[顺式-顺式(CC),顺式-反式(CT)和反式-反式(TT)],但尚未通过实验探索它们在水中的单独反应动力学。在本文中,我们研究了所有分子的构象变化,离解(H2CO3 <=> HCO3〜_ + H〜+)和通过氢氧化物路线(HCO3〜-→CO2 + OH〜-)分解的能量和机理。使用Car-Parrinello分子动力学(CPMD)结合元动力学,可以确定水中三个构型的H2CO3。发现与气相不同,各种构象异构体之间的相互转化是通过两种不同的途径发生的,一种途径涉及两个二面角之一(0 = COH)的变化,另一种涉及通过氢键进行质子转移。线。计算通过第一途径的各种构象变化的自由能垒/变化,并将其与先前计算的气相值进行对比。发现CT和TT构象异构体在水中通过两步过程进行分解:首先分解,然后将HCO3分解为CO2和OH。 CC构象体不直接分解,而是在分解之前首先经历CT或TT的构象变化。这与针对气相提出的协同机制相反,该机制涉及一个OH基团的脱羟基化和另一个OH基团的同时去质子化以产生CO 2和H 2O。在水中的离解涉及氢键合线与相邻水分子的重复形成和断裂,而分解是由H〜+从HCO3〜-的扩散开始的。这种分解机理与水路脱水所提出的分解机理(HCO3〜-+ H3O〜+→CO2 + H2O)不同,后者涉及附近的H3O〜+离子的参与。我们针对CT和TT构象异构体计算出的pK_d值和分解自由能垒分别与3.45 kcal / mol和22.28 kcal / mol的总体实验值一致,这表明应考虑各种构象异构体的动力学,以更好地理解H2CO3水溶液化学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号