...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Vibrational Coherence in Polar Solutions of Zn~(II) tetrakis(N-methyIpyridyl)porphyrin with Soret-Band Excitation: Rapidly Damped Intermolecular Modes with Clustered Solvent Molecules and Slowly Damped Intramolecular Modes from the Porphyrin Macrocyc
【24h】

Vibrational Coherence in Polar Solutions of Zn~(II) tetrakis(N-methyIpyridyl)porphyrin with Soret-Band Excitation: Rapidly Damped Intermolecular Modes with Clustered Solvent Molecules and Slowly Damped Intramolecular Modes from the Porphyrin Macrocyc

机译:Zn〜(II)四(N-甲基甲基吡啶基)卟啉与Soret-Band激发的极性溶液中的振动相干性:分子溶剂从分子簇中快速迁移到分子模态中

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ground-state coherent wavepacket motions arising from intermolecular modes with clustered, first-shell solvent molecules were observed using the femtosecond dynamic absorption technique in polar solutions of Zn~(II) meso-tetrakis(N-mefhylpyridyl)porphyrin (ZnTMPyP) with excitation in the Soret absorption band. As was observed previously in bacteriochlorophyll a solution, the pump-probe transients in ZnTMPyP solutions are weakly modulated by slowly damped (effective damping time γ > 1 ps) features that are assigned to intramolecular modes, the skeletal normal modes of vibration of the porphyrin. The 40 cm~(-1) and 215 cm~(-1) modes from the metal-doming and metal-solvent-ligand modes, respectively, are members of this set of modulation components. A slowly damped 2-4 cm~(-1) component is assigned to the internal rotation of the N-mefhylpyridyl rings with respect to the porphyrin macrocycle; this mode obtains strong resonance Raman intensity enhancement from an extensive delocalization of π-electron density from the porphyrin in the ground state onto the rings in the π~* excited states. The dominant features observed in the pump-probe transients are a pair of rapidly damped (γ < 250 fs) modulation components arising from intermolecular modes with solvent molecules. This structural assignment is supported by an isotope-dependent shift of the average mode frequencies in methanol and perdeuterated methanol. The solvent dependence of the mean intermolecular mode frequency is consistent with a van der Waals intermolecular potential that has significant contributions only from the London dispersion and induction interactions; ion-dipole or ion-induced-dipole terms do not make large contributions because the π-electron density is not extensively delocalized onto the N-methylpyridyl rings. The modulation depth associated with the intermolecular modes exhibits a marked dependence on the electronic structure of the solvent that is probably related to the degree of covalency; the strongest modulations are observed in acetonitrile and dimethylsulfoxide. The results strongly support a structural assignment of the low-frequency modes that are coupled to the primary and secondary electron-transfer reactions in photosynthetic reaction centers to intermolecular modes between the redox-active chromophores and first-solvation shell groups from the surrounding protein, and an important additional function of the intermolecular modes in the stabilization of charged intermediates is suggested.
机译:用飞秒动态吸收技术在Zn〜(II)介-四(N-甲叉吡啶基)卟啉(ZnTMPyP)的极性溶液中使用飞秒动态吸收技术观察到分子态模式与簇状第一壳溶剂分子在分子间模式引起的基态相干波包运动Soret吸收带。如先前在细菌叶绿素a溶液中观察到的那样,ZnTMPyP溶液中的泵浦探针瞬变受到缓慢阻尼(有效阻尼时间γ> 1 ps)的微弱调节,这些特征被赋予了分子内模式,即卟啉的骨架正常振动模式。来自金属配位模式和金属溶剂配体模式的40 cm〜(-1)和215 cm〜(-1)模式是这组调制分量的成员。缓慢阻尼的2-4 cm〜(-1)分量对应于N-甲基吡啶基环相对于卟啉大环的内部旋转;该模式通过从基态的卟啉到π〜*激发态的环上广泛的π电子密度离域而获得强共振拉曼强度增强。在泵浦探针瞬变中观察到的主要特征是一对快速衰减的(γ<250 fs)调制分量,它们是由带有溶剂分子的分子间模式产生的。甲醇和全氘化甲醇中平均模式频率的同位素依赖性位移为这种结构分配提供了支持。平均分子间模式频率对溶剂的依赖性与范德华分子间电势一致,该范德华分子间电势仅在伦敦色散和诱导相互作用中具有重要贡献;离子偶极子或离子诱导偶极子项贡献不大,因为π电子密度并未广泛地离域到N-甲基吡啶基环上。与分子间模式相关的调制深度表现出对溶剂电子结构的显着依赖性,这可能与共价度有关。在乙腈和二甲基亚砜中观察到最强的调节作用。结果强烈支持低频模式的结构分配,该模式与光合作用反应中心中的一次和二次电子转移反应耦合到氧化还原活性发色团和来自周围蛋白质的第一溶剂化壳基团之间的分子间模式,并且提出了分子间模式在带电中间体稳定中的重要附加功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号