首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Orientation-resolving pulsed electron dipolar high-field EPR spectroscopy on disordered solids: I. Structure of spin-correlated radical pairs in bacterial photosynthetic reaction centers
【24h】

Orientation-resolving pulsed electron dipolar high-field EPR spectroscopy on disordered solids: I. Structure of spin-correlated radical pairs in bacterial photosynthetic reaction centers

机译:定向分解脉冲电子偶极高场EPR光谱对无序固体的研究:I.细菌光合反应中心自旋相关自由基对的结构

获取原文
获取原文并翻译 | 示例
           

摘要

Distance and relative orientation of functional groups within protein domains and their changes during chemical reactions determine the efficiency of biological processes. In this work on disordered solid-state electron-transfer proteins, it is demonstrated that the combination of pulsed high-field EPR spectroscopy at the W band (95 GHz, 3.4 T) with its extensions to PELDOR ( pulsed electron-electron double resonance) and RIDME (relaxation-induced dipolar modulation enhancement) offers a powerful tool for obtaining not only information on the electronic structure of the redox partners but also on the three-dimensional structure of radical-pair systems with large interspin distances ( up to about 5 nm). Strategies are discussed both in terms of data collection and data analysis to extract unique solutions for the full radical-pair structure with only a minimum of additional independent structural information. By this novel approach, the three- dimensional structure of laser-flash-induced transient radical pairs P(865)(.+)Q(A)(.-) in frozen-solution reaction centers (RCs) from the photosynthetic bacterium Rhodobacter (Rb.) sphaeroides is solved. The measured positions and relative orientations of the weakly coupled ion radicals P-865(.+) and Q(A)(.-) are compared with those of the precursor cofactors P-865 and Q(A) known from X-ray crystallography. A small but significant reorientation of the reduced ubiquinone Q(A) is revealed and interpreted as being due to the photosynthetic electron transfer. In contrast to the large conformational change of Q(B)(.-) upon light illumination of the RCs, the small light-induced reorientation of Q(A)(.-) had escaped previous attempts to detect structural changes of photosynthetic cofactors upon charge separation. Although small, they still may be of functional importance for optimizing the electronic coupling of the redox partners in bacterial photosynthesis both for the charge-separation and charge-recombination processes.
机译:蛋白质域内官能团的距离和相对方向及其在化学反应过程中的变化决定了生物过程的效率。在这项关于无序固态电子转移蛋白的研究中,证明了W波段(95 GHz,3.4 T)的脉冲高场EPR光谱及其扩展至PELDOR(脉冲电子双共振)的组合和RIDME(松弛诱导的偶极调制增强)提供了一个强大的工具,不仅可以获取有关氧化还原伙伴电子结构的信息,而且还可以获取具有较大自旋间距离(约5 nm)的自由基对系统的三维结构的信息。 )。在数据收集和数据分析方面都讨论了策略,以仅使用最少的其他独立结构信息来提取完整​​的自由基对结构的独特解决方案。通过这种新颖的方法,来自光合细菌Rhodobacter(Rhodobacter)的冷冻溶液反应中心(RCs)中的激光闪光诱导的瞬态自由基对P(865)(。+)Q(A)(.-)的三维结构。解决了Rb。)sphaeroides。将弱耦合离子自由基P-865(。+)和Q(A)(.-)的测量位置和相对方向与X射线晶体学已知的前体辅因子P-865和Q(A)的位置和相对方向进行比较。还原的泛醌Q(A)发生了小而重要的重新定向,并被解释为归因于光合电子转移。与在RC光照下Q(B)(.-)的大构象变化相反,Q(A)(.-)的小光诱导重取向逃脱了先前检测光合作用因子的结构变化的尝试。电荷分离。尽管很小,但它们对于优化细菌光合作用中氧化还原配偶体的电子耦合在电荷分离和电荷重组过程中仍可能具有重要的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号