首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Estimating Free-Energy Barrier Heights for an Ultrafast Folding Protein from Calorimetric and Kinetic Data
【24h】

Estimating Free-Energy Barrier Heights for an Ultrafast Folding Protein from Calorimetric and Kinetic Data

机译:从量热和动力学数据估算超快折叠蛋白的自由能垒高度

获取原文
获取原文并翻译 | 示例
           

摘要

Differential scanning calorimetry was used to measure the temperature dependence of the absolute heat capacity of the 35-residue subdomain of the villin headpiece,a protein that folds in 5 mu s and is therefore assumed to have a small free-energy barrier separating folded and unfolded states.To obtain an estimate of the barrier height from the calorimetric data,two models,a variable-barrier model and an Ising-like model,were used to fit the heat capacity in excess of the folded state over the temperature range 15-125°C.The variable-barrier model is based on an empirical mathematical form for the density of states,with four adjustable parameters and the enthalpy(H)as a reaction coordinate.The Ising-like model is based on the inter-residue contact map of the X-ray structure with exact enumeration of ~105 possible conformations,with two adjustable parameters in the partition function,and either the fraction of native contacts(Q)or the number of ordered residues(P)as reaction coordinates.The variable-barrier model provides an excellent fit to the data and yields a barrier height at the folding temperature ranging from 0.4 to 1.1 kcal mol~(-1),while the Ising-like model provides a less good fit and yields barrier heights of 2.3±0.1 kcal mol~(-1)and 2.1±0.1 kcal mol~(-1)for the Q and P reaction coordinates,respectively.In both models,the barrier to folding increases with increasing temperature.Assuming a sufficiently large activation energy for diffusion on the free-energy surfaces,both models are consistent with the observation of a temperature-independent folding rate in previously published laser temperature-jump experiments.Analysis of this kinetic data,using an approximate form for the pre-exponential factor of Kramers theory and the 70 ns relaxation time for the fast phase that precedes the unfolding/refolding relaxation to determine the diffusion coefficient,results in a barrier height of 1.6±0.3 kcal mol~(-1)for an unspecified reaction coordinate.Although no independent test of the validity of the H,Q,or P reaction coordinates is given,the barrier-height estimates obtained with the three reaction coordinates are in quite good agreement with the value derived from a Kramers analysis of the kinetics that makes no assumptions about the reaction coordinate.However,the higher estimates obtained using Q or P appear more consistent with me finding of barrier-crossing kinetics of a villin mutant that folds in 700 ns,corresponding to a 1.3 kcal mol~(-1)reduction in the folding barrier relative to wild-type.All of the results suggest that the free-energy barrier to folding is sufficiently low that it should be possible to engineer this protein or find solution conditions that would eliminate the barrier to create the"downhill"folding scenario of Wolynes and Onuchic.
机译:差示扫描量热法用于测量维尔林头罩35个残基亚结构域的绝对热容的温度依赖性,该蛋白在5 s s内折叠,因此被认为具有较小的自由能垒,可分开折叠和展开为了从量热数据中获得势垒高度的估计值,使用了两个模型(可变势垒模型和类似于Ising的模型)来拟合在15-125温度范围内超过折叠状态的热容°C。可变壁垒模型基于状态密度的经验数学形式,具有四个可调参数,并且焓(H)作为反应坐标。类似Ising的模型基于残基间接触图精确枚举约105种可能构象的X射线结构,在分区函数中具有两个可调参数,并且以天然接触分数(Q)或有序残基数(P)作为反应坐标。可变势垒模型对数据提供了很好的拟合,并且在折叠温度为0.4到1.1 kcal mol〜(-1)时产生势垒高度,而类似Ising的模型则提供了较差的拟合,并且产生了势垒高度。 Q和P反应坐标分别为2.3±0.1 kcal mol〜(-1)和2.1±0.1 kcal mol〜(-1)。在两个模型中,折叠的障碍都随着温度的升高而增加。假定足够大的活化能对于自由能表面上的扩散,这两个模型都与先前发表的激光温度跳跃实验中与温度无关的折叠速率的观察结果一致。对该动力学数据进行分析,使用近似形式表示Kramers的指数前因子理论和快速反应在展开/折叠弛豫之前的70 ns弛豫时间决定了扩散系数,对于未指定的反应坐标,势垒高度为1.6±0.3 kcal mol〜(-1)。给出了H,Q或P反应坐标有效性的最终测试,使用这三个反应坐标获得的势垒高度估计值与对动力学进行Kramers分析得出的值非常吻合,该分析没有做任何假设但是,使用Q或P获得的更高估计值似乎与我发现的在700 ns内折叠的villin突变体的壁垒穿越动力学的发现更一致,这对应于折叠时1.3 kcal mol〜(-1)的降低。所有结果都表明折叠的自由能壁垒足够低,以至于有可能工程化该蛋白质或寻找能够消除该壁垒以形成“下坡”折叠场景的溶液条件。 Wolynes和Onuchic。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号