...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Urea-Amide Preferential Interactions in Water: Quantitative Comparison of Model Compound Data with Biopolymer Results Using Water Accessible Surface Areas
【24h】

Urea-Amide Preferential Interactions in Water: Quantitative Comparison of Model Compound Data with Biopolymer Results Using Water Accessible Surface Areas

机译:水中尿素-氨化物的优先相互作用:使用可接触水的表面积对模型化合物数据与生物聚合物结果的定量比较

获取原文
获取原文并翻译 | 示例

摘要

Two fundamentally different thermodynamic approaches are in use to interpret or predict the effects of urea on biopolymer processes: one is a synthesis of transfer free energies obtained from measurements of the effects of urea on the solubilities of small, model compounds; the other is an analysis of preferential interactions of urea with a range of folded and unfolded biopolymer surfaces. Here, we compare the predictions of these two approaches for the contribution of urea-amide (peptide) interactions to destabilization of folded proteins by urea. For these comparisons, we develop independent thermodynamic analyses of osmometric and solubility data characterizing interactions of a model compound with urea (or any other solute) and apply them to all five model compounds (glycine, alanine, diglycine, glycylalanine, and triglycine) where both isopiestic distillation (ID) and solubility data in aqueous urea solutions are available. We use model-independent expressions to calculate μ_(23)~(ex), the derivative of the "excess" chemical potential of solute "2" (either a model compound or a biopolymer) with respect to the molality of solute "3" (urea). Analyses of ID data for these systems reveal significant dependences of μ_(23)~(ex) on both m2 and m3, which must be taken into account in making comparisons with values of μ_(23)~(ex) obtained from solubility studies or from analyses of urea-biopolymer preferential interactions. Values of μ_(23)~(ex) calculated from model compound ID data at low m2 and m3 are directly proportional to the amount of polar amide (N, O) surface area, and not to any other type of surface. The proportionality constant in this limit,μ_(23)~(ex)/(RT·ASA) = (1.0 ± 0.1) × 10-3 A-2, is very similar to that previously obtained by analysis of urea-biopolymer preferential interactions ((1.4 ± 0.3) × 10-3 A-2). This level of agreement for amide surface in the low concentration limit, as well as the absence of any significant preferential interaction of urea with Gly and Ala, reinforces the conclusion that the primary preferential interaction of urea with protein surface is a favorable interaction (resulting in local accumulation of urea) at polar amide surface, located mostly on the peptide backbone. However, μ_(23)~(ex) for interactions of urea with these model amides is found from both ID and solubility data to be urea concentration-dependent, in contrast to the urea concentration independence of the analogous quantity for protein unfolding.
机译:两种根本不同的热力学方法用于解释或预测尿素对生物聚合物过程的影响:一种是通过测量尿素对小型模型化合物的溶解度的影响而获得的转移自由能的合成;另一种是分析尿素与一系列折叠和未折叠生物聚合物表面的优先相互作用。在这里,我们比较这两种方法对尿素-酰胺(肽)相互作用对尿素折叠蛋白去稳定作用的贡献的预测。对于这些比较,我们开发了渗透压和溶解度数据的独立热力学分析,以表征模型化合物与尿素(或任何其他溶质)之间的相互作用,并将它们应用于所有五个模型化合物(甘氨酸,丙氨酸,二甘氨酸,甘氨酰丙氨酸和三甘氨酸),可获得等渗蒸馏(ID)和在尿素水溶液中的溶解度数据。我们使用与模型无关的表达式来计算μ_(23)〜(ex),即溶质“ 2”(模型化合物或生物聚合物)相对于溶质“ 3”的摩尔浓度的“过量”化学势的导数(尿素)。这些系统的ID数据分析表明,μ_(23)〜(ex)对m2和m3都具有显着依赖性,在与通过溶解度研究获得的μ_(23)〜(ex)值进行比较时必须考虑到这一点。根据尿素-生物聚合物优先相互作用的分析。根据模型化合物ID数据在低m2和m3时得出的μ_(23)〜(ex)值与极性酰胺(N,O)表面积的量成正比,而与任何其他类型的表面均不成比例。在此极限下的比例常数μ_(23)〜(ex)/(RT·ASA)=(1.0±0.1)×10-3 A-2,与先前通过分析尿素-生物聚合物优先相互作用得到的比例常数非常相似((1.4±0.3)×10-3 A-2)。在低浓度范围内,酰胺表面的这种一致水平以及尿素与Gly和Ala之间没有任何显着的优先相互作用,进一步强化了以下结论:尿素与蛋白质表面的主要优先相互作用是有利的相互作用(导致大部分位于肽主链上的极性酰胺表面)。然而,从ID和溶解度数据中发现,尿素与这些模型酰胺的相互作用的μ(23)-(ex)与尿素浓度相关,这与蛋白质解折叠的类似量的尿素浓度无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号