首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Highly Efficient Spectral Hole-Burning in Oxygen-Evolving Photosystem II Preparations
【24h】

Highly Efficient Spectral Hole-Burning in Oxygen-Evolving Photosystem II Preparations

机译:析氧光系统II制备中的高效光谱烧孔

获取原文
获取原文并翻译 | 示例
           

摘要

We present the first report of highly efficient persistent spectral hole-burning in active (oxygen-evolving) Photosystem II (PSII) preparations.Samples are poised in the Si state of the Kok cycle,with the primary quinone (QA) either neutral or photoreduced to QA~ via a low-temperature pre-illumination.Remarkably efficient hole-burning is observed within the chlorophyll Q_y(0,0) absorption envelope in the wavelength range of 676- 695 nm.The hole-burning action spectrum of a sample poised in the S_1(Q_A~-) state is dominated by a narrow feature (approx 40 cm~(-1)) at 684 nm,where hole depths of 30% are attainable.The photoproduct for spectral holes burnt in this region is distributed across the approx 50 cm~(-1) absorption feature centered at 683.5 nm,independent of the excitation wavelength within this band.Saturated hole-burning experiments indicate weak electron- phonon coupling near 684 nm but stronger coupling for holes burnt near 690 nm.Selective excitation near 690 nm of samples in the S_1(Q_A) state also results in efficient Q_A~- formation.Negligible hole-burning activity is observed at higher energies (<676 nm).Holewidths extrapolated to zero fluence and temperature are 2.0 ± 0.5 GHz near 685 nm for PSII samples in the S_1(Q_A~-) state.Holewidths are twice as large and hole-burning quantum efficiencies are up to an order of magnitude greater (approaching 1%) for samples in the S_1(Q_A) state.We ascribe hole-burning near 684 nm to slow (40-210 ps) excitation transfer from a CP43 chlorophyll to the PSII reaction center,and we ascribe hole-burning at approx 690 nm to excitation transfer from a chlorophyll in CP47.The unusually high hole-burning efficiency that we observe is attributed to a mechanism that involves charge separation in the reaction center that follows excitation transfer from these "slow transfer" states in CP43 and CP47.A key result of this work is the observation that selective excitation in the range 685-695 nm leads to efficient charge separation,as indicated by Q_A~- formation.This indicates the presence of (a relatively weak) P680 absorption in a native PSII,extending to low energy and underlying the CP47 chlorophyll trap absorption.
机译:我们提出了第一个关于在活跃的(放氧的)光系统II(PSII)制剂中进行高效持久光谱烧孔的报告。样品处于Kok周期的Si状态,其中初级醌(QA)处于中性或光还原状态通过低温预照明到达QA〜。在叶绿素Q_y(0,0)的吸收范围内,在676-695 nm的波长范围内观察到非常有效的空穴燃烧。在S_1(Q_A〜-)状态下,在684 nm处有一个狭窄的特征(约40 cm〜(-1))占主导地位,空穴深度可达到30%。大约50 cm〜(-1)的吸收特征集中在683.5 nm处,与该波段内的激发波长无关。饱和的空穴燃烧实验表明,在684 nm附近弱的电子-声子耦合,而对于在690 nm附近燃烧的空穴更强的耦合。样品在690 nm附近激发在S_1(Q_A)状态下也能有效地形成Q_A〜-。在较高能量(<676 nm)处观察到的空穴燃烧活性微不足道。对于PSII样品,在685 nm附近推断出的零通量和温度范围为2.0±0.5 GHz在S_1(Q_A〜-)状态下,分子宽度是原来的两倍,并且在S_1(Q_A)状态下,样品的空穴燃烧量子效率高出一个数量级(接近1%)。从684 nm到CP43叶绿素到PSII反应中心的激发转移缓慢(40-210 ps),我们将约690 nm处的空穴发射归因于CP47中从叶绿素的激发转移。观察到的现象归因于一种机制,它涉及反应中心中的电荷分离,该电荷分离是根据CP43和CP47中这些“慢速转移”状态的激发转移而进行的。这项工作的关键结果是观察到在685-695 nm范围内的选择性激发会导致到有效的收费分离如Q_A〜-所示。这表明天然PSII中存在P680吸收(相对较弱),扩展为低能量并位于CP47叶绿素陷阱的吸收基础上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号