...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >A Computer Simulation Study of Silver-Gold Cluster Formation on AgBr Tabular Microcrystals with AgIBr Cores
【24h】

A Computer Simulation Study of Silver-Gold Cluster Formation on AgBr Tabular Microcrystals with AgIBr Cores

机译:具有AgIBr核的AgBr平板微晶上银-金团簇形成的计算机模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

Computer simulations is used to study how an iodobromide core in an AgBr tabular microcrystal affects the efficiency of photoinduced metal cluster formation. Iodide ions can trap photogenerated holes and act as recombination centers. But interstitial silver ion formation from lattice silver ions adjacent to the trapped holes can reduce the chargeon the site, reducing the recombination cross section and increasing the overall efficiency of metal cluster formation. This process is modeled by varying the recombination radius of the iodide-trapped hole over an 8-fold range. Several arrangements of electron traps provided by a chemical treatment of the microcrystal surface are studied. The simplest arrangement is that of a uniform placement. In this case, the iodobromide core can improve efficiency but only when the recombination radiusis smaller than that due to intrinsic hole traps. When the electron traps are positioned at the corners of the microcrystal and given a large trapping radius and trap depth, the iodobromide core is unable to improve the efficiency, even when its recombination radius is 25% of that for an intrinsically trapped hole. Locating some of the electron traps at the thin edges of the tabular microcrystal benefited from the iodobromide core only when the traps had the same trapping radius as those on the face of the microcrystal. Similar results were found when the electron traps were confined to a small region of the edge. Comparison with limited experimental data suggests that the intersitial-silver-ion formation process at the site of an iodie-trapped hole appears to be competitive with recombination at that site. This situation leads to an efficiency improvement in those cases where there is excessive recombination, even after optimum chemical treatment of the microcrystal surface.
机译:使用计算机模拟来研究AgBr平板微晶中的碘溴化物核如何影响光诱导金属簇形成的效率。碘离子可捕获光生空穴并充当重组中心。但是,由与陷获的孔相邻的晶格银离子形成间隙银离子可以减少位点上的电荷,减小重组截面并提高金属簇形成的整体效率。通过在8倍范围内改变碘化物俘获孔的复合半径来模拟此过程。研究了通过微晶表面化学处理提供的电子陷阱的几种排列方式。最简单的布置是均匀放置。在这种情况下,碘溴化物核可以提高效率,但是仅当重组半径小于由于固有空穴陷阱引起的重组半径时才可以。当电子陷阱位于微晶的拐角处并且具有较大的陷阱半径和陷阱深度时,即使溴化碘化物核的复合半径为固有陷阱的复合半径的25%,碘溴化物核也无法提高效率。仅当电子陷阱的俘获半径与微晶体表面的俘获半径相同时,才能将某些电子陷阱置于平板状微晶体的薄边缘处,这才受益于碘溴化物核。当电子陷阱被限制在边缘的一小部分时,发现了相似的结果。与有限的实验数据进行比较表明,在被碘捕获的孔的位置处的间隙银离子形成过程似乎对该位置处的重组具有竞争性。即使在对微晶表面进行了最佳化学处理之后,这种情况也会在过度重组的情况下提高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号