首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Four-Component Relativistic Density Functional Theory Calculations of EPR g- and Hyperfine-Coupling Tensors Using Hybrid Functionals: Validation on Transition-Metal Complexes with Large Tensor Anisotropies and Higher-Order Spin-Orbit Effects
【24h】

Four-Component Relativistic Density Functional Theory Calculations of EPR g- and Hyperfine-Coupling Tensors Using Hybrid Functionals: Validation on Transition-Metal Complexes with Large Tensor Anisotropies and Higher-Order Spin-Orbit Effects

机译:使用混合泛函的EPR g和超精细耦合张量的四成分相对论密度泛函理论计算:对具有大张量各向异性和高阶自旋轨道效应的过渡金属配合物的验证

获取原文
获取原文并翻译 | 示例
       

摘要

The four-component matrix Dirac-Kohn-Sham (mDKS) implementation of EPR g- and hyperfine A-tensor calculations within a restricted kinetic balance framework in the ReSpect code has been extended to hybrid functionals. The methodology is validated for an extended set of small 4d(1) and 5d(1) [MEXn](q) systems, and for a series of larger Ir(II) and Pt(III) d7 complexes (S = 1/2) with particularly large g-tensor anisotropies. Different density functionals (PBE, BP86, B3LYP-xHF, PBE0-xHF) with variable exact-exchange admixture x (ranging from 0% to 50%) have been evaluated, and the influence of structure and basis set has been examined. Notably, hybrid functionals with an exact-exchange admixture of about 40% provide the best agreement with experiment and clearly outperform the generalized-gradient approximation (GGA) functionals, in particular for the hyperfine couplings. Comparison with computations at the one-component second-order perturbational level within the Douglas-Kroll-Hess framework (1c-DKH), and a scaling of the speed of light at the four-component mDKS level, provide insight into the importance of higher-order relativistic effects for both properties. In the more extreme cases of some iridium(II) and platinum(III) complexes, the widely used leading-order perturbational treatment of SO effects in EPR calculations fails to reproduce not only the magnitude but also the sign of certain g-shift components (with the contribution of higher-order SO effects amounting to several hundreds of ppt in 5d complexes). The four-component hybrid mDKS calculations perform very well, giving overall good agreement with the experimental data.
机译:在ReSpect代码的受限动平衡框架内,EPR g和超精细A张量计算的四分量矩阵Dirac-Kohn-Sham(mDKS)实现已扩展到混合功能。该方法论已针对一组扩展的小型4d(1)和5d(1)[MEXn](q)系统以及一系列较大的Ir(II)和Pt(III)d7配合物(S = 1/2 )具有特别大的g张量各向异性。评估了具有不同精确交换混合物x(范围从0%到50%)的不同密度泛函(PBE,BP86,B3LYP-xHF,PBE0-xHF),并研究了结构和基集的影响。值得注意的是,具有约40%的精确交换掺混物的混合官能团提供了与实验的最佳一致性,并且明显优于广义梯度近似(GGA)官能团,特别是对于超精细偶联。与Douglas-Kroll-Hess框架(1c-DKH)中一分量二阶微扰级的计算结果进行比较,以及四分量mDKS层级的光速缩放,可以深入了解更高的重要性这两个属性的相对论效应。在某些铱(II)和铂(III)配合物的极端情况下,在EPR计算中广泛使用的SO效应的前导微扰处理不仅不能重现某些g位移分量的幅度,而且不能重现(在5d配合物中,高阶SO效应的贡献达到数百ppt。四成分混合mDKS计算性能非常好,总体上与实验数据吻合良好。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号